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Uncovering the architecture of white-matter axons is fundamental to the study of brain networks. 
We developed a method for quantifying axonal orientations at ~15 micron resolution. This method 
is based on the common Nissl staining of postmortem histological slices. Nissl staining reveals the 
spatial organization of glial cells along axons. Using structure tensor analysis, we leveraged this 
patterned organization to uncover the local axonal orientation. We used Nissl-based structure-5 

tensor analysis to extract fine details of axonal architecture and demonstrated its applicability in 
multiple datasets of humans and non-human primates. Nissl-based structure tensor analysis can be 
used to compare fine-grained features of axonal architecture across species, and is widely 
applicable to existing datasets. 

One-Sentence Summary: Whole-brain glial cell organization provides a histological reference 10 

for axonal orientation across datasets and species. 
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A long-standing goal of neuroscience is the mapping of neural circuitry underlying cortical and 
subcortical computations (1, 2). This entails mapping the axons that communicate information 
between brain regions. It is therefore essential to develop tools for fine-grained measurement of 
white-matter architecture at a cellular resolution. Existing methods are either limited to animal 
studies (3), require highly specialized equipment for data acquisition and processing (4–8), or 5 

require specialized stains for myelin, whose staining quality is highly sensitive to the exact staining 
procedure (9, 10).  
 
One of the most common tools for studying brain tissue postmortem is Nissl staining, which targets 
the cell nuclei. It has revolutionized our understanding of the cortical gray matter and has been 10 

used extensively to inform cortical parcellations based on cytoarchitectonic features (11). 
However, it has never been used to study the architecture of the white matter, which mostly 
comprises of axons and glial cells. This state of affairs has left the white matter as terra incognita 
in Nissl-based histological atlases. 
 15 

We developed a method for visualizing and quantifying in-plane fiber orientations at a resolution 
of ~15 microns, based on postmortem histological slices stained for Nissl. To extract the fiber 
orientations, we utilize the spatial organization of glial cells within white matter. Studies of 
specific white-matter tracts have shown that astrocytes and myelinating oligodendrocytes cluster 
in short rows aligned with the axons that they support (12, 13). Such studies refer to this 20 

organization as the “glial framework” of the white matter. 
 
We hypothesized that by measuring the local orientation glial cells across the white matter, we 
could infer the underlying axonal architecture. To measure the in-plane glial orientation we used 
structure tensor analysis, a technique from computational image processing often used for 25 

quantifying local orientations in textured images (14, 15). The structure tensor is a matrix derived 
from the partial derivatives of the image intensity along the x and y axes (see Methods for 
mathematical formulation; (16)). The second eigenvector of this matrix points in the direction 
minimal changes in intensity values, i.e., along oriented structures such as glial rows in the Nissl-
stained white matter. We applied structure tensor analysis to quantify the orientation of glial rows 30 

and to visualize the underlying fiber architecture. We term this technique “Nissl-based structure 
tensor” (Nissl-ST). We applied Nissl-ST to several independent datasets of humans and non-
human primates.  
 
First, we demonstrated the applicability of Nissl-ST in the human corpus callosum, the major 35 

white-matter tract that connects the two hemispheres. Fig. 1 shows that the stained cells tend to 
cluster in short rows, as predicted by the glial framework assumption (all figures are based on 
Dataset 1 unless stated otherwise). Remarkably, the orientation of these short rows is not arbitrary; 
rather, nearby rows are similarly oriented, and their orientation agrees with the known orientation 
of neighboring axons (17). The local orientations generally agree with the macroscopic orientation 40 

of the corpus callosum.  
 
To increase signal-to-noise ratio in the pixel-wise ST calculation, we convolved each tensor 
element with a Gaussian smoothing kernel (with a standard deviation of ρ=15 microns) (18) (Fig. 
S1). Calculating the ST at every pixel (Fig. 1C) allowed us to construct a polar histogram 45 

summarizing the glial-rows orientation density function (gODF) in every image tile of 2002 
microns2 (Fig. 1D). Hence, the measurement’s effective spatial resolution is determined by the 
Gaussian kernel (15 microns) and the resolution of the tiles used for extracting peak orientations 
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(here we used tiles of 502 or 2002 microns2). As expected in the corpus callosum, where axons are 
coherently oriented, the gODFs are narrow and present a sharp peak (17, 19). Throughout this 
work, the vector field of peak orientation extracted from the gODF is presented in whole-slice, 
color-coded in-plane orientation maps. 
 5 

 
Fig. 1. Nissl-based structure tensor analysis of the human corpus callosum. (A) In-plane 
orientation maps in a coronal slice of the right hemisphere (in tiles of 2002 microns2, smoothing 
kernel of 15 microns), color-coded according to the semicircle on the right. The in-plane 
orientation is calculated as the peak orientation of the structure tensors in each tile. (B) Magnified 10 

view of the corpus callosum (CC) region indicated in panel (a), calculated in 50×50 microns2 tiles. 
(C) Example tiles from different locations along the CC. Top: Glial cells are organized in short 
rows oriented along nearby axons. Bottom: A subset of the pixel-wise orientations overlaid on top 
of the grayscale tiles. (D) Polar histograms of the glial-rows orientation distribution functions 
(gODF) in each tile.  15 
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In Fig. 2 we compared the orientation map derived from Nissl-ST with a published image of 
postmortem polarized light imaging (PLI) (20) and with the orientation map derived from in vivo 
diffusion magnetic resonance imaging (MRI) (21, 22). For the in vivo MRI data, the in-plane peak 
orientation was extracted from the spherical harmonics representation of the fiber orientation 
distribution function (ODF; see Methods and Fig. S2). At the macroscopic scale, all methods yield 5 

similar orientation maps, both in deep white matter and near the cortex, where many axons that 
enter or leave the cortex are oriented toward major gyral crowns. A closer look at several regions 
of interest revealed the fine details obtained with Nissl-ST and PLI. First, Nissl-ST captures the 
local incoherence of fibers in the corpus callosum (Fig. 2D, red and yellow tiles; (17)). It also 
reveals the fiber architecture known as Edinger’s Comb (Fig. 2E), which is the crossing of the 10 

lenticular fasciculus (red) through the internal capsule (green) (23, 24). Finally, Nissl-ST reveals 
fine fiber bundles such as the angular bundle (yellow), which connects the hippocampus and 
entorhinal cortex (Fig. 2F) (25). These fine details of the fiber architecture are captured with Nissl-
ST and PLI, but are unresolved in the in vivo diffusion MRI, which is measured at a much lower 
resolution (1.25 mm isotropic). 15 
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Fig. 2. Comparison of Nissl-based structure tensor and other methods. (A-C) In-plane 
orientation maps in coronal slices of the right hemisphere from three different human datasets. 
(A) Nissl-based structure tensor (Nissl-ST, effective resolution ~15 microns, visualized with 
200×200 microns2 tiles), (B) polarized light imaging (PLI; in-plane resolution of 1.3×1.3 5 

microns2. Image reproduced with permission from Axer, Amunts et al., Forschungszentrum Jülich 
GmbH (C) in vivo diffusion MRI (resolution of 1.25 mm isotropic), showing peak-orientations 
projected onto the plane. To minimize sharp transitions in the more granular diffusion data, we 
smoothed the image using a median filter (see unsmoothed image in Fig. S3). All methods estimate 
similar orientations for the in-plane axons, even in regions where the predominant fiber bundle 10 

crosses perpendicular to the plane, such as the inferior longitudinal fasciculus (ILF, dashed 
ellipse; see Fig. S2) (D-F) Magnified views of the regions indicated in (A)-(C), visualized with 
50×50 microns2 tiles. (D) Local inhomogeneity in the corpus callosum. (E) Axons of the lenticular 
fasciculus (red, black arrowheads) that connect the subthalamic nucleus and the internal globus 
pallidus pass through the internal capsule (green), giving rise to the interchanging pattern of 15 

crossing fibers also known as Edinger’s Comb. (F) The angular bundle (yellow, white 
arrowheads), which connects the hippocampus and entorhinal cortex. 
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Next, we tested whether the glial framework persists in regions of axon crossing. Complex 
architectures such as axon crossing are ubiquitous in the brain, estimated to occur in 60-90% of 
white-matter voxels in a typical acquisition of diffusion MRI (26). To date, the glial framework 
has been explored in few studies, all of which focus on specific tracts in regions with a single fiber 5 

population (13, 27–29). It is unknown how glial cells are distributed in in regions of axon crossing. 
Are they arranged in arrays of intersecting glial rows, or are they randomly distributed? This 
question has important biological implications (28): If the glial framework persists in regions of 
fiber crossing, this strengthens the assumption that the spatial organization of glial cells has 
functional implications, providing evidence that glial cells are tract-specific and are not shared 10 

across tracts. We found evidence supporting the persistence of the glial framework in regions of 
fiber crossing: First, our ability to obtain maps similar to those derived from PLI using only the 
Nissl-stained images suggested that the glial framework is a brain-wide feature. Second, a strong 
test case for the hypothesis that the glial framework persists in regions of fiber crossing is shown 
in regions in which the predominant orientation is of fibers that pass through the imaging plane. 15 

For example, the inferior longitudinal fasciculus (ILF) travels through the coronal plane and 
crosses fibers that enter the temporal lobe (Fig. 2, dashed ellipse; see Fig. S2 for the visualization 
of ILF orientation). If the glial framework broke in this fiber crossing, we would not expect to find 
a clear orientation in this region. However, we found a clear in-plane orientation originating from 
axons that cross the ILF (magenta). This in-plane orientation was also captured by PLI and in vivo 20 

diffusion MRI data. Hence, it seems that the glial cells that support in-plane axons that cross the 
ILF retain the spatial organization of short glial rows. These results suggest that the glial 
framework persists even in regions of axonal crossing. 
 

 25 
Fig. 3. Coherence of Nissl-based structure tensor across the brain. (A) Coherence map of the in-
plane orientation in the same slice as Fig. 2A. Low values indicate tiles of incoherent orientations, 
such as in the fiber-crossing region of the centrum semiovale (arrowhead). (B) Magnified view of 
a tile in a crossing region in the centrum semiovale. The incoherence is reflected in the isotropic 
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gODF (right). (C) Magnified view of a tile in the region of Edinger’s Comb, where axons along 
the medial-lateral axis (red) cross axons along the inferior-superior axis (green). Crossing in this 
region manifests as a sharp change in the orientation of short glial rows. 
  
To further study the spatial organization of glial cells across the brain, we calculated how the 5 

coherence of in-plane orientation varies in space (Fig. 3A). The in-plane coherence quantifies the 
similarity between pixel-wise orientations across a region of interest. It is defined as the norm of 
the vector sum of all eigenvectors within the tile and ranges between 0 (incoherent orientations) 
and 1 (coherent orientations) (30). The coherence map in Fig. 3A reveals coherent regions both in 
areas with known single-bundle populations (e.g., the corpus callosum) as well as in areas of in-10 

plane axons that cross through-plane axons (e.g., the ILF). In contrast, the centrum semiovale, 
which is a three-way crossing region (31), shows low coherence values. To test whether Nissl-ST 
detects any prominent glial orientations in such regions of low coherence, we focused on the 
centrum semiovale and on Edinger’s Comb. In the centrum semiovale we found less organized 
spatial arrangement of glial cells compared with other regions, as reflected by the more isotropic 15 

gODF (Fig. 3B). This may be due, in part, to the limitation of Nissl-ST in recovering the orientation 
of through-plane axons. While Nissl-ST extracts a single orientation per pixel, the in-plane fiber 
crossing in this region can be evaluated over defined regions of interest (Fig. S4). The orientation 
of the through-plane crossing fibers remains unresolved due to the two-dimensional nature of 
Nissl-ST. In the region of Edinger’s Comb, two in-plane fiber bundles are intertwined, giving rise 20 

to a pattern of interchanging orientations (Fig. 3C). Close inspection of this region reveals a clear 
border between horizontal and vertical glial rows, which is evident also in the resulting two-peak 
gODF.  
 
Regions of multiple fiber crossing may result in greater uncertainty in peak orientation. We 25 

quantified the uncertainty in peak orientation using a bootstrap approach. Uncertainty was 
typically low, with a 95% confidence interval ≤3° in 90% of the white-matter pixels (Fig. S5). 
Higher values of uncertainty were localized mostly to the centrum semiovale. Besides fiber 
crossing, we found that other potential sources of signal typically did not affect the peak orientation 
extracted with Nissl-ST. These other sources include blood vessels (Fig. S6-7) as well as 30 

background fibrous structures (Fig. S8-9). While blood volume in the white matter is estimated to 
be only 2.57% (32), the estimated peak orientation could be affected in atypical regions with very 
high blood vessel volume (Fig. S7). Rare white-matter neurons probably do not affect the results 
of Nissl-ST, as even near the gray matter, where the fraction of white-matter neurons is higher 
than in deep white matter (33), Nissl-ST provided useful orientation information (Fig. S10). See 35 

Supplementary Text for a detailed account of these analyses. 
 
We further explored the effects of three non-biological sources also could affect the results of 
Nissl-ST: image resolution, imaging noise and staining variability. First, to test the effect of the 
raw data’s spatial resolution on Nissl-ST, we compared the estimated orientations in downsampled 40 

versions of the same data. We found that downsampling increased the angular difference with 
respect to the native-resolution image (Fig. S11; Sup. Table 1). Furthermore, an in-plane resolution 
lower than 5×5 microns2 limited the accuracy of the recovered orientations, with a median angular 
difference of 15 degrees. Second, since Nissl-ST is based on computing image gradients, imaging 
noise can negatively affect the orientation estimation (16). Qualitatively, visual inspection of the 45 

high-quality data we used here suggests that imaging noise is very low and unlikely to affect the 
results of Nissl-ST. Indeed, quantitatively, we found an extremely low level of imaging noise in 
these data, with a normalized variance smaller than 10-4 (see Methods). We performed simulations 
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in which we added higher levels of noise, and found that increasing levels of noise increased the 
angular error of Nissl-ST (though denoising methods can reduce the effects of severe noise; Table 
S2; Fig. S12-14). Finally, some nuclei may appear lighter than others in Nissl-stained slices, due 
either to actual variability in staining or to their different positions along the depth of the slice. We 
simulated variable levels of cell staining and found that Nissl-ST is robust to staining variability 5 

(Fig. S15). See Supplementary Text for more details on these analyses. 
 
An exciting application of the orientation maps derived from Nissl-ST is the digital reconstruction 
of white-matter pathways using existing histological datasets. Here, we used deterministic 
tractography (34) over the peak in-plane orientations derived from Nissl-ST to reconstruct white-10 

matter pathways in the human brain. Fig. S16 shows the reconstruction of the corpus callosum. In 
addition, we tested the ability of Nissl-ST to resolve short association fibers (U-fibers). We found 
that the high resolution of Nissl-ST allows the reconstruction of U-fibers, and provided evidence 
for a U-fiber system around the occipitotemporal sulcus. While the exact cortical endpoints of 
reconstructed fibers can only be measured in axonal tracing studies, the ultra-high resolution of 15 

Nissl-ST can provide complementary information to existing techniques for U-fiber mapping (5, 
35) (see Supplementary Text). 
 
To establish the wide applicability of Nissl-ST to multiple datasets and species, we applied it to 
histological sections of four independent datasets: two human specimens (36, 37) and two non-20 

human primates (a rhesus macaque and a vervet monkey; available at http://brainmaps.org/). Fig. 
4A shows the orientation maps derived from each dataset. Nissl-ST successfully extracted 
meaningful orientation maps with similar features across datasets. Furthermore, we found that the 
region of Edinger’s Comb (white arrowhead) is conserved across species, showing a similar 
characteristic crossing of glial rows in each specimen (Fig. 4B). 25 
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Fig. 4. Applicability of Nissl-based structure tensor across datasets. (A) In-plane orientation 
maps in coronal slices of four independent datasets, demonstrating the applicability of Nissl-ST to 
existing histological datasets of humans and non-human primates (rhesus macaque and vervet 
monkey), establishing the existence of the whole-brain glial framework across species. (B) A 5 

magnified view of tile from Edinger’s Comb in each specimen (white arrowheads in (A)). The 
characteristic axonal crossing in this region is preserved across species. 
 
 
Nissl-ST has great potential for use in future studies of white matter in normal development, 10 

normal aging (38) and pathological states that affect the white matter, like schizophrenia (39). 
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Such applications of Nissl-ST will need to account for the unique challenges that the histological 
data may present. For example, pathological conditions accompanied by microglial response may 
be accompanied by an alternation to the spatial distribution of glial cells (40). Development, 
especially at prenatal stages, poses a fascinating challenge for Nissl-ST: On the one hand, Nissl-
ST provides a potential means to study the initial development of myelin, as some studies in the 5 

rat found that already at birth, oligodendroglial progenitor cells are assembled in short rows that 
resemble those of the adult brain (27). On the other hand, since the relative proportion of different 
cell types changes in development (41, 42), it is possible that at early stages of development, the 
main source of the signal in Nissl-ST would be other cell types (e.g., endothelial cells), thereby 
masking the effect of the short glial rows. To demonstrate applicability of Nissl-ST to 10 

developmental data, we compared the dataset of the adult rhesus macaque (Fig. 7) to 120 days 
embryonic stage and 14 days postnatal. These data suggest that at 120 embryonic days, the density 
of glial cells (or their progenitors) is very low compared with that of the 14 days postnatal brain 
(Fig. S17), with the latter much more similar to the adult case. Furthermore, at 120 embryonic 
days, the cells did not seem organized in short rows. In contrast, by 14 days postnatal, glial cells 15 

were already organized in short rows along the axons’ expected orientation. Future research 
focusing on the intermediate stages in development therefore could shed light on the process and 
ordering of myelination across white-matter pathways. 
  
A common feature of Nissl-ST, PLI and structure-tensor analysis based on myelin staining is their 20 

sensitivity to myelinated (rather than non-myelinated) axons. In addition, the proposed 
implementation of Nissl-ST is two-dimensional in nature. Hence, it is unable to resolve the 
orientation of through-plane fibers. Since glial cells associated with out-of-plane axons cannot be 
easily identified as such, they might introduce uncertainty into the method’s orientation estimates. 
Future studies directly comparing Nissl-ST and PLI in the same slice could shed more light on 25 

their differential sensitivity to both in-plane and through-plane orientations. An exciting extension 
of the proposed technique would be generalizing the Nissl-ST method to three-dimensional 
datasets, such as the future high-resolution version of BigBrain (which used silver staining of cell 
bodies rather than Nissl staining (43)). Notably, this would require specialized tools for correcting 
between-section staining variability (43). Such three-dimensional datasets could be integrated with 30 

neuroimaging data using specially tailored toolboxes (44).  
 
The glial framework — the patterned spatial organization of glial cells in the white matter — has 
been described in only a handful of pathways, namely the rat fimbria (13), the mouse corpus 
callosum (28) and the vervet corpus callosum (29). Additionally, Pandya and Schmahmann (2006) 35 

briefly mentioned the glial framework (which they call the “glial matrix”) in the context of the ILF 
and the nearby tracts. It is a longstanding question whether the glial framework extends to all 
myelinated tracts, especially phylogenetically younger tracts. Here, we found direct evidence that 
this is the case for the corpus callosum, the lenticular fasciculus and the internal capsule in humans, 
rhesus macaques and vervet monkeys, as well as a U-fiber around the occipitotemporal sulcus in 40 

the human brain. The overall similarity of in-plane orientation maps derived from Nissl-ST and 
from PLI suggests that the structured organization of glial cells along axons extends to other white-
matter tracts. 
  
The model-free approach of Nissl-ST reveals a surprisingly rich layer of information in Nissl 45 

stained brain slices, which has been hitherto unused. An advantage of Nissl-ST compared with 
existing methods is the inherent coregistration of the novel maps that can be derived from white 
matter and the maps derived from cortical and subcortical structures. This would allow for an easy 
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integration of Nissl-based atlases of gray matter structures alongside maps of white-matter 
architecture. The abundance of Nissl stained resources in labs around the globe, as well as the 
prevalence of digitized datasets and open-source atlases including high-resolution Nissl stained 
slices (36, 37, 45, 46) make the proposed technique readily applicable to numerous datasets. 
Importantly, such datasets would allow for the comparison of fine-grained features of fiber 5 

architecture across species as well as between healthy and diseased brains and would provide a 
simple way to obtain a histological reference for in vivo white-matter mapping. 
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Materials and Methods 
Datasets 
We used four datasets of postmortem coronal brain sections stained with Nissl staining. Two 
datasets were from human donors, and two from non-human primates, as described below. 
 5 

Dataset 1 is part of the Atlas of the Human Brain in Stereotaxic (MNI) Space. It consists of coronal 
slices from the right hemisphere of a 26-year-old male from the Vogt collection of Düsseldorf. 
Full details regarding the tissue and its histological processing can be found at Atlas of the Human 
Brain ((36); Section 2.1 Material and Methods). In short, the brain was fixed in formalin three 
hours after the time of death. The brain then was cut into five vertically oriented blocks and 10 

embedded in paraffin, and later sliced into 20-micron-thick coronal slices. 50 slices were stained 
using cresyl violet or hematoxylin. All slices were photographed at 0.645x0.645 microns2 
resolution in-plane and can be viewed online at www.thehumanbrain.info. Here, we used slices 
r3-1373 (Fig. 1), r3-0570 (Fig. 2, Fig. 3) and r3-0720 (Fig. 4). 
 15 

Dataset 2 is part of the BrainSpan Atlas of the Developing Human Brain Project (37). It consists 
of coronal sections from the left hemisphere of a 34-year-old woman. Full details regarding the 
tissue and its histological processing can be found in the Reference Atlases Documentation at: 
http://help.brain-map.org/display/humanbrain/Documentation. In short, the brain was fixed in 
formalin three hours after the time of death. The brain was cut into eight approximately vertically 20 

oriented blocks and embedded in paraffin, and later sliced into 20-micron-thick coronal slices. All 
slices were photographed at 0.972 microns2 resolution in-plane and are available online at 
http://atlas.brain-map.org. Here, we used slice 112360921 (Fig. 4). 
 
Datasets 3 and 4 are part of the BrainMaps (47) brain atlas. Dataset 3 consists of a coronal section 25 

from the brain of an adult rhesus macaque (Macaca mulatta; dataset ID 159). The brain was frozen 
and sliced into 30-micron-thick coronal slices. All slices were photographed at 0.46x0.46 microns2 
resolution in-plane and are available on-line at http://brainmaps.org/. Here, we used slice 400 (Fig. 
4). 
 30 

Dataset 4 consists of a coronal section from the brain of an adult vervet monkey (Chlorocebus 
aethiops; dataset ID 42). The brain was embedded in gelatin and sliced into 40-micron-thick 
coronal slices. All slices were photographed at 0.46x0.46 microns2 resolution in-plane and are 
available online at http://brainmaps.org/. Here, we used slice 207 (Fig. 4). 
 35 

Datasets 5 and 6 are part of the NIH Blueprint Non-Human Primate (NHP) Atlas, which is 
available online at http://atlas.brain-map.org. Dataset 5 consists of a coronal section from the brain 
of a prenatal male rhesus macaque (Macaca mulatta; dataset ID 121051250), at embryonic day 
120. The brain was frozen and sliced into 50-micron-thick coronal slices. All slices were 
photographed at 0.97×0.97 microns2 resolution in-plane. Here, we used slice 127838348. 40 

 
Dataset 6 consists of a coronal section from the brain of a neonate male rhesus macaque (dataset 
ID 112192062), at 14 days postnatal. The brain was frozen and sliced into 50-micron-thick coronal 
slices. All slices were photographed at 0.97x0.97 microns2 resolution in-plane. Here, we used slice 
112352912. 45 
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Structure tensor analysis 
To assess the local orientation of short glial rows, we used structure tensor analysis (15, 48, 49), 
based on the MATLAB implementation of (16). The structure tensor is often used in image texture 
analysis and crucially does not require the segmentation of individual cells. Instead, the structure 
tensor is calculated based on the partial derivatives of the image (see below). We converted each 5 

histological image to grayscale and calculated the structure tensor for each pixel using MATLAB 
(MathWorks, Natwick, MI, USA), with the code provided in the paper of (16). Given a grayscale 

image I, the structure tensor J is defined as the matrix of partial derivatives of the image, 𝐼௫ =
ௗூ

ௗ௫
 

and 𝐼௬ =
ௗூ
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where ⟨𝑓, 𝑔⟩௪ denotes the weighted inner product of two images 𝑓, 𝑔, with a Gaussian smoothing 
kernel 𝑤(𝑥, 𝑦). The width of the kernel 𝑤, denoted by ρ, defines the local neighborhood over 
which the tensor is calculated. Following (18), we used a Gaussian kernel with a standard deviation 15 

of ρ=15 microns. For each pixel, we extracted the orientation of the eigenvector associated with 
the smallest eigenvalue of the structure tensor (the orientation of minimal changes in intensity 
values, i.e., along oriented structures). Visual inspection revealed that in Dataset 2 (human brain) 
results were improved in terms of agreement with other datasets, if the image is smoothed first. 
We therefore smoothed the image of Dataset 2 with a Gaussian smoothing kernel of σ=3 microns 20 

prior to calculating the structure tensor. 
  
To visualize the results, we divided each slice into tiles of size 2002 microns2. For zoomed-in 
visualization, we used tiles of 502 microns2. For each tile, we calculated the distribution of local 
orientations and then extracted the peak orientation. To minimize the contribution of pixels far 25 

from any stained cell (farther than the standard deviation of the smoothing kernel, ρ), we created 
a pixel inclusion mask as follows: We binarized each tile using the Otsu threshold (50) with 
MATLAB’s “graythresh” function, and included only those pixels that were as close as ρ to any 
glial cell pixel. We visualized the glial-row orientation distribution function (gODF) using a polar 
histogram with a bin width of 3 degrees.  30 

 
To calculate the meso-scale anisotropy, we calculated the coherence of pixel-wise orientations in 
each tile. The coherence is defined as the norm of the vector sum of all eigenvectors within the tile 
(30). Coherence ranges between 0 (incoherent orientation) and 1 (coherent orientations), and can 
be thought of as a measure similar to the fractional anisotropy (FA) in diffusion MRI (51).  35 

 
We present the orientational information as color-coded maps (15) restricted to the white matter, 
and overlaid on a grayscale image of the mean intensity in each tile. The RGB value is determined 
by the peak orientation, and shaded by the coherence value of the tile. 
 40 

For visualization of the white-matter orientation maps, we generated a white-matter mask at the 
level of 2002 microns2 tiles. We generated the white-matter mask based on a whole-slice image 
with a high contrast between gray- and white-matter, which we constructed as follows. First, we 
binarized each image tile. Then, we identified connected components within the binary image, 
using MATLAB’s “bwconncomp” with default parameters. Then, we calculated the 95th percentile 45 
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size of connected components in each tile. This yielded a whole-slice image with a high contrast 
between white- and gray-matter, reflecting the fact that the white matter contains smaller 
connected components compared with the gray matter (Fig. S18). To generate the initial white-
matter mask, we binarized this whole-slice image using Otsu’s method and filled in holes in the 
resulting mask. We further corrected the white-matter mask by manual inspection. 5 
 
Certainty measures of peak orientation 
We used a nonparametric bootstrap approach to estimate the certainty of the peak orientation 
calculated with Nissl-ST. For every 2002 microns2 tile in a coronal slice from Dataset 1 we 
calculated the peak orientation 500 times. Each time we randomly sampled the pixel-wise 10 

orientations (with repeats), and calculated the peak orientation. We used the 95% confidence 
interval as a measure of the certainty in peak orientation.  
 
The effect of biological sources on Nissl-ST 
The effect of blood vessels 15 

To study the effect of blood vessels on the results of Nissl-ST, we used a coronal slice from Dataset 
1 and manually chose 5002 microns2 tiles that include blood vessels. We applied Nissl-ST and 
visualized the local orientations throughout the entire tile. To study the differential contribution of 
blood vessels to Nissl-ST, we repeated the Nissl-ST analysis after manually segmenting and 
removing the blood vessels, which we performed using GIMP’s clone tool (52). 20 

 
The effect of background fibrous structures 
To test whether the orientation of Nissl-ST is driven by background fibrous structures, we removed 
the fibrous structures by binarizing the histological image, and the repeated the Nissl-ST analysis. 
Specifically, we binarized every 2002 microns2 tile in a coronal slice from Dataset 1 using an Otsu 25 

threshold. Since stained nuclei are much darker than the fibrous structures, applying the Otsu 
threshold resulted in the complete removal of fibrous structures in the background (Fig. S8). We 
applied Nissl-ST to the binarized images and calculated the peak orientation. We calculated the 
angular difference of the resulting orientations with respect to those extracted from the original 
image. 30 

 
Peak orientations near cortical gray matter 
To examine the ability of Nissl-ST to recover peak orientations as axons approach or leave the 
cortical gray matter (GM), we used a coronal slice from Dataset 1 and focused on the superior 
frontal gyrus. First, we applied a histogram equalization to the high-resolution histological image, 35 
in order to increase the contrast between white matter (WM) and GM. Then, we manually traced 
the border of the WM. Even at such a high resolution, it is impossible to determine the GM/WM 
border precisely, and instead we observed a gradual transition from WM to GM. Therefore, we 
defined the GM/WM border as the band of 200 microns at the end of the WM.  
  40 

In Nissl staining, one can identify glial cells and neurons based on their distinct cytological features 
(53). To support our definition of the GM/WM border, we quantified the neuronal density in each 
tissue type (GM, WM, and GM/WM border). We used the ilastik toolkit ((54); www.ilastik.org), 
which allows the user to train machine-learning tools to perform different image analysis tasks. 
We used the Pixel Classification workflow and trained a random-forest classifier based on pixel-45 

level features to separate the stained cells from the background. The classifier further classified 
cells as either glial cells or neurons. By counting the number of connected components in the 



Submitted Manuscript: Confidential 
Template revised February 2021 

19 
 

image, whose pixels were classified as neurons, we obtained a gross estimate of the density of 
neurons (neurons/micron2) within each tissue type.  
 
We applied Nissl-ST to particularly small 502 microns2 tiles within the WM and GM/WM border 
regions and calculated the orientation distribution functions in both tissue types. 5 

  
The effect of non-biological sources on Nissl-ST 
Spatial resolution analysis 
To study the effect of spatial resolution on the quantification of local orientation, we used a single 
human brain slice from Dataset 1. Starting with the native in-plane resolution of 0.6452 microns2, 10 

we downsampled the histological image by five different factors (2, 4 8, 16, and 32), yielding an 
effective in-plane resolution of approximately 1.32, 2.62, 5.22, 10.32 and 20.62 microns2, 
respectively. We calculated the structure tensor analysis as above, and extracted the peak 
orientation in each 2002 microns2 tile. For each downsampling factor, we calculated the angular 
difference with respect to the peak orientation from the higher, native resolution. Here we assumed 15 

that the higher resolutions yield more accurate orientations and that a large difference between the 
orientation derived from original and downsampled images is a sign of low stability and plausible 
erroneous orientation estimates. 
 
Robustness to noise 20 

To assess the robustness of Nissl-ST to imaging noise, we used a coronal slice of a human brain 
from Dataset 1. First, we verified that the data we used does not suffer from imaging noise. For 
this aim, we derived an empirical estimation of the noise-level in the data: From the slice image, 
we extracted a background region that contained no tissue. We divided the pixel values by 255 to 
obtain a normalized image with values in the range 0 (black) and 1 (white). Assuming that this 25 

background region should have uniform intensity values, we define the normalized noise variance 
as the variance of the gray-level values across this large region of interest (55).  
 
To assess the robustness of Nissl-ST to imaging noise in possibly noise-corrupted datasets, first 
we focused on the corpus callosum of Dataset 1, using a 2002 microns2 tile. We normalized the 30 

grayscale image to the range of 0-1 and used MATLAB’s “imnoise” function to add Gaussian 
noise with mean 0 and three values of variance (0.05, 0.50 and 1.00, which are more than two 
orders of magnitude larger than the empirically estimated noise in the data). For each variance 
value, we generated 1,000 noisy images. We further denoised each noise-corrupted image either 
using a simple Gaussian filter using MATLAB’s “imgaussfilt” with a smoothing kernel of 2 pixels, 35 

or using the Block-matching and 3D filtering (BM3D) package implemented in MATLAB (56). 
For each of the 1,000 repeats, we applied Nissl-ST to extract the peak orientation from the noisy 
and the two denoised images, and calculated the angular error of the peak orientation with respect 
to the original grayscale image.  
 40 

To further study how the sensitivity to noise changes across the slice, we introduced Gaussian 
noise to the entire coronal slice. Here, we chose used a normalized noise variance of 0.05 and 0.2. 
Since our preliminary analysis on the region of the corpus callosum showed no advantage of 
BM3D over Gaussian filtering, here we denoised the image using a Gaussian filter. We applied 
Nissl-ST to extract the peak orientations and calculate the angular error of the peak orientation 45 

with respect to the original grayscale image. 
 
Robustness to staining variability  
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To test the robustness of Nissl-ST to staining variability (resulting either from true staining 
variability or from the position of each cell within the depth of the histological slice), we used two 
2002 microns2 tiles from the corpus callosum of Dataset 1. We binarized each image and further 
applied a watershed algorithm to separate contiguous cells. Using each binarized image, we 
simulated images of variable staining as follows: For each cell, we randomly chose a gray-level 5 

value from a uniform distribution in the range of 127±30. In addition to this between-cell 
variability, we simulated a sub-population of lightly stained cells as follows. We randomly chose 
a predetermined fraction of the cells and scaled their gray-scale level by a factor of 5 to result in 
lighter shades of gray (Fig. S15). We repeated this for 0, 10, 20, 30, 40 or 50% of the cells. For 
each predetermined fraction, we generated 1,000 simulated images and applied Nissl-ST to extract 10 

the peak orientation. For each repeat, we calculated the angular error of the peak orientation with 
respect to the original binary image. 
 
Tractography using Nissl-ST 
To test whether the vector field of peak orientations from Nissl-ST can be used to reconstruct 15 

white-matter pathways in the brain, we used a coronal slice from Dataset 1. We focused on two 
white-matter pathways: the corpus callosum and a U-fiber around the occipitotemporal sulcus 
(OTS). First, we converted the Nissl-ST-based peak orientations to NIfTI format. We used the 
NIfTI as input to a deterministic tractography algorithm called Fiber Assigned by Continuous 
Tracking (FACT; (34)), which we implemented with MRtrix3. We used a step size of 2 microns 20 

and a maximal angle of 60° between successive steps. Streamlines were seeded in seed regions of 
interest in the white matter (Fig. S16A, inset). In each pixel we seeded 5 streamlines. Tracking 
was terminated when streamlines left the white-matter mask. Streamlines were visualized using 
the Automatic Fiber Quantification toolbox (57).               
 25 

In vivo diffusion MRI 
To compare the results of Nissl-ST with in vivo diffusion MRI, we used the data of subject 100307 
from the publicly available Human Connectome Project (HCP (58)). We downloaded the data that 
had been processed using the HCP preprocessing pipeline (59). The diffusion-weighted MRI data 
consisted of 90 noncollinear diffusion-weighted directions with a b-value of 2000 s/mm2, and six 30 

non-diffusion-weighted images with a b-value of 0 s/mm2, with a resolution of 1.25 mm isotropic. 
The anatomical T1-weighted image had a resolution of 0.7 mm isotropic. 
 
We calculated the in-plane peak orientation in a coronal slice using the constrained spherical 
deconvolution (CSD) method as implemented by MRtrix 3.0 (60, 61). We resampled the resulting 35 

spherical fiber orientation distributions to the resolution of the anatomical data (0.7 mm). From 
each voxel we extracted the largest two peak orientations of fibers using the MRTrix functions 
fod2fixel and fixel2voxel (62). We projected each peak onto the coronal plane and then calculated 
its in-plane orientation. To extract a single in-plane orientation for each voxel, we used the 
following procedure: For each peak we calculated the apparent fiber density (AFD (63)) and the 40 

orientation with respect to the coronal plane. By default, we chose the peak associated with the 
greatest AFD. We chose the second peak only in voxels where the second peak had a larger 
projection onto the coronal plane, and also exceeded a threshold of 0.2 times the maximal AFD in 
the voxel (to minimize the inclusion of noisy peaks). This yielded a single in-plane orientation for 
each voxel, based on the CSD model of the diffusion data. To minimize sharp transitions due to 45 

choosing a single peak per voxel, we smoothed the in-plane orientation map using a median filter 
with a radius of 2 voxels (see Fig. S3 for comparing the smoothed and unsmoothed images).  
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Polarized light imaging 
The PLI image in Fig. 2 was kindly provided by Axer, Amunts et al., Forschungszentrum Jülich 
GmbH. It is of a human donor, and was scanned at a spatial resolution of 1.3x1.3 microns2 in-
plane, and a slice thickness of 60 microns. 
 5 
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Supplementary Text 
Throughout this work, we provide strong evidence that Nissl-ST can recover local fiber 
orientations by leveraging the glial framework. Here, we describe complementary analyses that 
support the utility of Nissl-ST and explore the potential effects of various biological and imaging 
sources that could contribute to the Nissl-ST signal. 5 

 
The effect of biological sources on Nissl-ST 
The effect of blood vessels 
Nissl staining is not specific to the glial cells of the glial framework. Hence, other stained 
structures, such as blood vessels, also might affect the peak orientation, which then would make 10 

them a confounding factor. Indeed, Nissl also stains the endothelial cells that line the blood vessels, 
making it challenging to eliminate their contribution to Nissl-ST. However, previous studies have 
estimated the total blood volume in the white matter to be only 2.57% (32). The same study found 
that one-third of the blood resides in blood vessels parallel to white-matter tracts. (Others reported 
similar findings (64, 65)). Consequently, only a fraction of the blood vessels could negatively 15 

affect the recovered orientations. Other studies also have noted that the density of blood vessels in 
white matter is significantly smaller compared with cortical and subcortical gray matter (65). 
  
To study the effect of blood vessels in our data, we manually identified image tiles that include 
blood vessels within the white matter in a coronal slice of a human brain from Dataset 1. Blood 20 

vessels were identified by their unique appearance: stained nuclei of endothelial cells that line the 
blood vessel are often elongated and assume the tubular shape of the blood capillaries (53). We 
found that Nissl-ST captures the local orientations of the blood vessels, but due to the relatively 
low density of blood vessels, they likely do not affect the extracted peak orientations substantially. 
In Fig. S6A we identify blood vessels that have the same orientation as the glia network, and in 25 

Fig. S6B and S7 we show blood vessels that are orthogonal to the glia network but do not 
contribute to the calculated orientation due to their low density. In Fig. S7C we select a smaller 
tile within Fig. S7A in which a blood vessel occupies a large fraction of the image. In this unique 
case, an erroneous peak orientation occurs (although it is still smaller compared to the peak 
orientation in this particular tile). 30 

 
In an additional analysis, we manually removed the blood vessels from the same images. We 
applied Nissl-ST and extracted the local and peak orientations again. We found that the peak 
orientations in all these images were unchanged (Fig. S6-7). 
 35 

We note that care must be taken in analyzing datasets of early embryonic specimens, in which 
endothelial cells may comprise a larger fraction of white-matter cells (see Fig. S17). A complete 
elimination of blood-vessel effects would require specialized techniques, such as a specialized 
staining designed for identifying vasculature or an automatic segmentation method for identifying 
blood vessels using machine-learning techniques. 40 

 
The effect of background fibrous structures 
A close inspection of the histological sections reveals a biological source that may contribute to 
Nissl-ST: background fibrous structures, which are most likely axons (e.g., Fig. 1C, Fig. 4B). To 
verify that these background fibrous structures are not the main source of the signal in the Nissl-45 

ST orientations, we removed them by binarizing the image and leaving only stained cell nuclei 
(Fig. S8; see Methods). In the 2002 microns2 tiles from the corpus callosum that we used in Fig. 
S8, we found an angular difference of 1-4° between binary and grayscale images. At the whole-
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slice level, we found that the resulting orientation map is very similar to that of the original image 
(median angular difference of 8°), with high angular differences localized mostly in the region of 
the centrum semiovale (Fig. S9). These results suggest that while the background fibrous structures 
may contribute some information to Nissl-ST, they are not the main source of the signal in Nissl-
ST analysis. 5 

 
White-matter neurons and peak orientations near cortical gray matter 
Another potential biological source of signal for Nissl-ST is white-matter neurons. In the deep 
white matter, neurons comprise less than 1% of the cells (66) and are unlikely to affect the 
extracted orientations. While others have reported up to four times more neurons in the superficial 10 

white matter compared with deep white matter (33) this is still a small fraction of the cells 
compared with glial cells. Indeed, our tractography reconstruction of U-fibers based on Nissl-ST 
(Fig. S16) suggests that such rare neurons (also known as “solitary neurons”) do not have a strong 
effect on the recovered orientations.  
 15 

The observation that oligodendrocytes often are arranged in short rows even in the deep layers of 
the cortex (53) suggests that Nissl-ST could provide useful orientation information even for those 
axons that are close to the cortex. To investigate the applicability of Nissl-ST near cortical gray 
matter (GM), we focused on the superior temporal gyrus in a coronal section of a human brain 
from Dataset 1 (Fig. S10A-B). We manually traced the white-matter (WM) border, and defined 20 

the GM/WM border as the 200-micron-wide band extending from the GM into the WM. To support 
our definition of the GM/WM border, we calculated a gross estimate of the neuronal density within 
each tissue type (Fig. S10C-E; see Methods). Fig. S10D and S10E show a heatmap of the neurons’ 
areal density and a summary bar plot, respectively. The results clearly demonstrate a very low 
density in the WM (median±median absolute deviation from the median (MAD) 0±0 25 

neurons/micron2); a greater density in the GM/WM border (0.0004±0.0004 neurons/micron2); and 
the greatest density in the cortical GM (0.0008±0.0004 neurons/micron2).  
  
To gain adequate sensitivity to local effects near the GM, we applied Nissl-ST in small tiles of 502 
microns2. Visual inspection of the resulting peak-orientation map in Fig. S10F reveals a general 30 

orientational preference towards the gyral crown (green). Typically, we did not observe a sharp 
transition to random orientations closer to the GM, suggesting that Nissl-ST provides useful 
information even in the GM/WM border region. Interestingly, in the lower part of the gyrus we 
observed tiles with less ordered orientations at the GM/WM border (Sup. Fig 10F-G, two 
arrowheads). We attribute this to the convoluted three-dimensional structure of the cortex and 35 

adjacent white matter in this region: As evidenced by the seemingly much thicker cortex in this 
region, this part of the gyrus is probably a region where the cortex folds obliquely with respect to 
the coronal histological section. 
 
The effect of non-biological sources on Nissl-ST 40 
In addition to the biological sources described above, we explored non-biological sources that 
could affect the results of Nissl-ST. First, we note that Nissl-ST, like other postmortem methods, 
may be compromised by staining artifacts or tears in the tissue. Such artifacts might manifest as 
large deviations in peak orientations over a small region, which would require visual inspection of 
the tissue in the affected regions. However, for the datasets we used here, the smoothness of the 45 

in-plane orientation maps suggests that such artifacts did not have a large effect. Below we discuss 
in detail the potential effects of other non-biological sources that could affect Nissl-ST – imaging 
noise and staining variability.  
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The effect of imaging noise 
Imaging noise is expected to negatively affect the orientation estimation of Nissl-ST since it might 
change the local gradients that Nissl-ST is sensitive to (16). We estimated the imaging noise 
empirically by calculating the signal variance in a non-tissue region, which should have a uniform 5 

signal in the ideal case of no noise. First, we normalized the image grayscale levels to the range of 
0 (black) and 1 (white). We found an extremely low level of imaging noise in these data, with a 
normalized signal variance smaller than 10-4 (see Methods). This is a very low level of noise 
compared to the relevant contrast in the image: The difference between the gray-levels of stained 
cells (0.3) and background tissue (0.8) is 0.5, three orders of magnitude larger than the noise 10 

variance. This suggests that imaging noise is not a limiting factor in these data.  
 

Next, we used simulations to test the performance of Nissl-ST in the presence of greater imaging 
noise and to study the effects of image-denoising techniques. First, we focused on an image tile 
from the human corpus callosum (Fig. S12), and added mild (normalized noise variance of 0.05), 15 

severe (0.50) and extreme (1.00) levels of noise. Then we applied Nissl-ST to the noisy image and 
to denoised versions of the image. Fig S12 and Table S2 show that increasing levels of noise 
increased the angular error. Interestingly, while image denoising alleviated the effects of noise in 
the severe and extreme levels of noise, it showed no advantage in the case of mild noise, in which 
Gaussian denoising actually increased the angular error. This is likely because Gaussian denoising 20 

also introduces unwanted smoothing that affects the local image gradients. Under severe and 
extreme levels of noise, the advanced denoising technique (BM3D) and the simple Gaussian 
denoising yielded similar results.  
 
Next, we studied the effects of noise across an entire coronal slice. Since BM3D showed no 25 

advantage over Gaussian denoising in the previous analysis, here we focused on Gaussian 
denoising. We added either mild (normalized noise variance of 0.05) or sever (0.20) levels of noise 
to the image. We found that the effect of noise varied across the slice, with greater noise sensitivity 
outside the corpus callosum (Fig. S13-14). Again, we found that denoising is advantageous only 
when severe (but not mild) noise has been added: With the addition of mild noise the median 30 

angular error across the slice was 8°, and increased to 10° after Gaussian denoising. In contrast, 
with the addition of severe noise, the median angular error across the slice was 21°, and dropped 
to 12° after Gaussian denoising. These results suggest that researchers who want to perform Nissl-
ST analysis should first estimate their imaging noise, and should perform image denoising only if 
the estimated noise level is high.  35 

 
The effect of staining variability 
In Nissl-stained slices, some nuclei may appear lighter than others. Such variability could result 
either from actual variability in staining or from different cell positions along the depth of the slice. 
To explore the robustness of Nissl-ST to staining variability, we simulated variable levels of cell 40 

staining. We found that Nissl-ST is robust to staining variability (Fig. S15): Even when we 
simulate 50% lightly-stained cells, we found an angular difference of up to 3±2° (median±MAD) 
compared with an image of uniformly stained cells. 
  
Tractography using Nissl-ST 45 

Nissl-ST allows for the estimation of local fiber orientations at ultra-high (~15 microns) resolution. 
One potential application of Nissl-ST is the reconstruction of white-matter pathways in existing 
Nissl-stained datasets, in which little or no attention has been given to the white-matter. We 
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demonstrate tractography reconstructions based on Nissl-ST in two pathways in the human brain: 
the corpus callosum and a short association fiber (U-fiber) around the occipitotemporal sulcus 
(OTS).  
 
Fig. S16 shows the reconstructions of the two pathways using deterministic tractography (34). The 5 

corpus callosum streamlines were seeded near the midline, and reach the superior frontal gyrus 
and the cingulate gyrus. Callosal fibers reaching the cingulate cortex are usually not reported in 
human studies, possibly due to the limitations diffusion MRI tractography (67). However, axonal 
tracing studies in the macaque have demonstrated that such callosal fibers do reach the cingulate 
cortex (3). We also report a novel evidence for a U-fiber around the human OTS (Fig. S16). While 10 

the histological data that we use here cannot be used to dismiss the possibility that this putative U-
fiber in fact represents axons that leave the inferior longitudinal fasciculus (ILF), we note that tract 
tracing studies have found direct connections between the gyri surrounding the OTS (reference 
(3), Plate 97). A similar U-fiber can be seen in a PLI study of the vervet monkey ((5), Fig. 7), and 
possibly in a diffusion MRI study of the human brain as well (68). 15 

 
We note that even at high resolutions such as those used here, the inherent limitations of 
tractography persists. For example, using deterministic tractography, the lateral projections of the 
corpus callosum cannot be reconstructed (67). Hence, while ultra-high resolution tractography 
based on Nissl-ST is useful in complementing conventional diffusion MRI tractography studies 20 

and postmortem dissections studies, it cannot replace the ground-truth provided by axonal tracing 
studies, which are only feasible in animal studies.  
 
Future studies could explore the use of probabilistic tractography algorithms based on Nissl-ST as 
well. Such an analysis would require the extraction of multiple orientations per tile (or voxel), for 25 

example using bootstrap analysis, or by modelling the distribution of local orientations (e.g., with 
a mixture of von Mises distributions (69)). While existing datasets currently allow only 2-
dimensional reconstructions, future datasets such as the upcoming 1-micron-resolution BigBrain 
(70) might allow for 3-dimensional reconstructions of fiber pathways. 
 30 
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Supplementary Tables 
 
 
 DS=2 DS=4 DS=8 DS=16 DS=32 
Effective 
pixel size 
[microns] 

1.29 2.58 5.16 10.32 
 

20.64 

Median 
angular error 

5° 10° 15° 20° 31° 

Table S1. The effect of in-plane image resolution on the peak orientation. A coronal slice from 
Dataset 1 was analyzed with different downsampling (DS) factors. The median angular error with 5 

respect to the native resolution was calculated across the entire white matter. See Fig. S11. 
 
 

 Mild (σ2=0.05) Severe 
(σ2=0.50) 

Extreme 
(σ2=1.00) 

Noisy 3±2° 19±12° 30±20° 
Gaussian 
filter 

7±2° 7±4° 10±6° 

BM3D 3±2° 11±4° 10±4° 
Table S2. The effect of imaging noise on the peak orientation in an image from the human 
corpus callosum. Angular errors in the form of median±median absolute deviation from the 10 

median (MAD) calculated over 1,000 repeats are shown for each image type across mild, severe 
and extreme noise values (σ2 is the normalized noise variance). See Fig. S12. 
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Supplementary Figures 
  

 

Fig. S1. The effect of algorithm parameters on the Nissl-based structure tensor. Each image 
shows the Nissl-based structure tensors of the same tile (bottom row) from Dataset 1. Here, the 5 

effect of ρ (the width of the Gaussian kernel for spatial regularization) is greater than the effect of 
σ (the width of the Gaussian smoothing kernel used to smooth the image before calculating the 
structure tensors). A possible explanation for the greater effect of ρ is that the larger Gaussian 
kernel of ρ leads to a regularization effect between the relatively distant neighboring rows. ρ and 
σ are given in microns. The main analysis was performed with σ=0 and ρ=15. 10 
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Fig. S2. Extracting in-plane orientations in regions of fiber crossing. (A) 3D fiber orientation 
distribution functions (fODFs) estimated from in vivo diffusion MRI using CSD (red: medial-
lateral; green: anterior-posterior; blue: inferior-superior). Inset: Magnified view of the temporal 5 

lobe. The predominant fiber tract in this region is the interior longitudinal fasciculus (ILF, green) 
that passes through the plane. Fiber crossing the ILF is represented by secondary peaks in the 
fODF. Bottom: Magnified view of the fODF indicated above. The secondary in-plane peak 
(magenta) is marked by a white arrowhead. By projecting it to the coronal plane (right), the in-
plane peak orientation can be extracted. (B) The in-plane peak orientation of the diffusion MRI 10 

data. Colormap as above, excluding the anterior-posterior axis (green). (C) Color-coded 
orientation map based on Nissl-ST. Inset: the gODF from a 200-micron tile in the region of the 
ILF and crossing fibers. 

  



Submitted Manuscript: Confidential 
Template revised February 2021 

29 
 

 

 

Fig. S3. Smoothing of the diffusion MRI in-plane orientation map. (A) The original in-plane 
orientation map. (B) The in-plane orientation map after smoothing with a median filter of two 
voxels. 5 
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Fig. S4. Fiber crossing around the centrum semiovale. (A) In-plane orientation map in a coronal 
slice of the right hemisphere in tiles of 2002 microns2, color-coded according to the semicircle 
shown on the right. Inset shows a magnified view of the centrum semiovale, a known region of 5 

fiber crossing. (B) To visualize the fiber crossing in this region, we pooled the peak orientation 
across all inset tiles, and plotted the polar histogram of peak orientation (also known as the 
orientation distribution function or ODF). The histogram shows two prominent peaks, one vertical 
and one horizontal (white arrowheads). (C) The same peaks can be seen even without extracting 
the peak orientation in each tile (white arrowheads). Here, the polar histogram summarized all the 10 

local (pixel-wise) orientations in the inset. (D) The same slice as in (A), with a magnified region 
showing the corpus callosum (green) and the corona radiata (blue). (E-F) Polar histogram of the 
peak orientations (E) and all local orientations (F) in the ROI. Histograms show both diagonal 
(green and blue) and vertical (light blue) orientations.  
  15 
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Fig. S5. 
Confidence interval of the peak orientation. We computed the uncertainty of the peak 
orientations calculated with Nissl-ST using a nonparametric bootstrap approach. For every 2002 
microns2 tile we calculated the peak orientation 500 times. Each time we randomly sampled the 5 

pixel-wise orientations (with repeats), and calculated the peak orientation. We used the 95% 
confidence interval as a measure of the certainty in peak orientation. (A) Heatmap of the bootstrap 
peak-orientation confidence interval. Higher values are found mostly in the region of the centrum 
semiovale. (B) Histogram of the confidence interval extracted from the entire white matter. The 
peak orientation is largely stable across the slice, with a 90th percentile of 3 degrees confidence 10 

interval (dashed red line). (C) The same histogram, with the y-axis in log scale. 
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Fig. S6. 
The effect of blood vessels on peak orientation. (A-B) Two 5002 microns2 tiles from a coronal 
section of the corpus callosum, manually chosen to include blood vessels (white arrowheads). The 
stained nuclei of endothelial cells that line the blood vessel are often elongated and assume the 5 

tubular shape of the blood capillaries (53). In (A) and (B) the blood vessels are left intact, while in 
(a’) and (b’) they have been removed manually using the clone tool in GIMP. Middle: A subset 
of the pixel-wise orientations overlaid on top of the grayscale tiles. Blood vessels affect the local 
orientation estimate (green-blue). However, due to their low density, the blood vessels do not affect 
the peak orientation, as can be seen in the polar histogram of all pixel-wise orientations (Right).  10 
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Fig. S7. 
The effect of blood vessels on peak orientation. (A) Left: A 5002 microns2 tile from a coronal 
section of the corpus callosum, manually chosen to include blood vessels (white arrowheads). The 
stained nuclei of endothelial cells that line the blood vessel are often elongated and assume the 5 

tubular shape of the blood capillaries (53). Middle: a subset of the pixel-wise orientations overlaid 
on top of the grayscale tiles. Blood vessels affect the local orientation estimate (green-blue). 
However, due to their low density, the blood vessels do not affect the peak orientation, as can be 
seen in the polar histogram of all pixel-wise orientations (Right). (B) The same slice as in panel 
(a), but with the blood vessels manually removed using the clone tool in GIMP. (C-D) Magnified 10 

view of the blood vessel region in (a-b). When the blood vessel takes up a large portion of the 
image, as in this example, it can affect the extracted peak orientation. Here, the polar histogram 
shows two prominent peaks: the main peak (orange) relates to the short glial rows orientation, and 
the secondary peak (cyan) is a spurious peak related to the blood vessels. 
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Fig. S8. 
The effect of background fibrous structures on the peak orientation. (A) Four 2002 microns2 5 

tiles from the corpus callosum (same as in Fig. 1). Fibrous structures, presumably the underlying 
axons, can be seen in each tile, orientated similarly to the glial rows. (B) A subset of the pixel-
wise orientations overlaid on top of the grayscale tiles. (C) To remove the effect of background 
fibrous structures, each tile was binarized before applying Nissl-ST. Importantly, the local 
orientations are very similar between binarized (C) and non-binarized (B) images. (D) Polar 10 

histograms showing the glial-rows orientation distribution functions (gODF) in each tile, for the 
grayscale (yellow) and the binarized (purple) images. The peak orientation differs only slightly, as 
indicated by the values of Δθ above each histogram. See Fig. S9 for whole-slice analysis. 
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Fig. S9.  
The effect of background fibrous structures on the peak orientation in an entire slice. (A-B) 5 
In-plane orientation maps in a coronal slice, calculated with 2002 microns2 tiles for the original 
grayscale (A) and binarized (B) images in which the background fibrous structures were 
eliminated. The peak orientation maps are largely similar, indicating that short glial cells are the 
main source of information in Nissl-ST. (C) The largest angular difference between (a) and (b) 
can be seen in the area of the centrum semiovale. (D) Scatterplot of the peak orientation in all 10 

white-matter tiles, with the orientation of the binary image plotted against the orientation of the 
grayscale image. (E) Histogram of the angular error, with a median value of 8° across white-matter 
tiles. 
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Fig. S10.  
Estimating peak orientations near the cortical gray matter. (A) In-plane orientation maps in a 
coronal slice, calculated with 2002 microns2 tiles. (B) Nissl staining of the superior frontal gyrus 
(marked with a box in panel (A)). Histogram equalization was applied to increase the contrast 5 

between gray matter (GM) and white matter (WM). The GM/WM border has been drawn manually 
(outer line), and the GM/WM border region was defined as the 200-micron band at the end of the 
WM. (b’) Magnified view of the marked regions in (b), showing the glial cells near the GM/WM 
border. (C) Automatic pixel-wise classification of glial cells (red) and neurons (black). (D) 
Heatmap of the areal density of neurons, calculated in 502 microns2 tiles. Note the clear difference 10 

between WM and GM. (E) Bar plot of the median neuronal density in the three tissue types. Error 
bars represent 1 median absolute deviation from the median (MAD). (F) An in-plane, peak-
orientation map of the WM and GM/WM border, calculated in 502 microns2 tiles. Notice the 
continuity of orientations around the WM border: Nissl-ST typically recovers similar orientations 
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in the WM and in the GM/WM border (single arrowhead). In a region where the histological 
section cuts obliquely with respect to the convoluted cortex, we found more disordered orientations 
(two arrowheads). (G) The vector field of peak orientations in the same region, subsampled for 
easier visualization. In the WM, most ellipsoids point in the direction of the gyral crown. Near the 
GM/WM border, the ellipsoids tend to point perpendicular to the cortex. Single arrowhead 5 

represent a typical region with continuous orientations in the WM and GM/WM border. Two 
arrowheads mark a region with slightly more disordered orientations. (H) Polar histograms 
showing the glial rows orientation distribution functions, summarized across the two tissue types. 
The two histograms are largely similar, with the GM/WM histogram including more horizontal 
(red) and vertical (light blue) orientations. 10 
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Fig. S11. 
The effect of in-plane resolution on the peak orientation. A coronal slice from Dataset 1 was 
analyzed with different downsampling (DS) factors. (A) The color-coded orientation maps of each 
DS factor. For an easier comparison, the orientation maps were not shaded by coherence. (B) Maps 5 

of the angular error with respect to the native resolution. The centrum semiovale, a region of three-
way fiber crossing, shows the greatest sensitivity to in-plane resolution. The angular error increases 
as the spatial resolution is decreased. (C) Scatter plots of the peak orientation in all white-matter 
tiles, with orientation of the downsampled image plotted against the orientation of the native 
resolution. (D) Histogram of the angular error. At a DS factor of 32 (in-plane resolution of ~20 10 

microns), the histogram approaches a uniform distribution. 
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Fig. S12.  
The effect of noise on the estimated peak orientation. Simulated Gaussian noise (with mean 0) 
was added to a 2002 microns2 tile from the corpus callosum. (A) For each of the three chosen 5 

values for normalized noise variance (0.05, 0.50 and 1.00; rows), we simulated 1,000 repeats. Left: 
An example noisy image. Middle: the noisy image after denoising with a median filter. Right: 
The noise image after denoising with BM3D denoising. (B) Boxplots showing the angular error 
compared with the original image, for every denoising method, and for the different noise variance 
values. With BM3D denoising, the median angular errors and their MAD (median absolute 10 

deviation from the median) were 2±1°, 9±3° and 8±4°, respectively. Center lines indicate median 
values; notches indicate 95% confidence interval for the median; box limits indicate the 
interquartile range (IQR; 25th-75th percentiles); whiskers extend to the most extreme data points 
within 1.5 IQR outside the box; outliers are represented as red crosses. 
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Fig. S13. 
The effect of mild noise on the estimated peak orientation across a coronal slice. Simulated 
Gaussian noise with mean 0 and a normalized noise variance of 0.05 was added to the raw 5 

histological image. (A) Color-coded orientation maps of the original, noisy and denoised images. 
(B) Maps of the angular error with respect to the original image. The centrum semiovale, a region 
of three-way fiber crossing, shows the greatest sensitivity imaging noise. In this level of mild noise, 
denoising is not advantegous. (C) Scatter plots of the peak orientation in all white-matter tiles, 
with orientation of the noised (or denoised) image plotted against the orientation of the original 10 

image. (D) Histogram of the angular error. Denoising involves smoothing of the data, and results 
in a small increase in the median absolute angular error, from 8° to 10°. See Fig. S14 for the 
benefits of using denoising the presence of severe imaging noise.  
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Fig. S14. 
The effect of severe noise on the estimated peak orientation across a coronal slice. Simulated 
Gaussian noise with mean 0 and a normalized noise variance of 0.2 was added to the raw 5 

histological image. (A) Color-coded orientation maps of the original, noisy and denoised images. 
(B) Maps of the angular error with respect to the original image. The centrum semiovale, a region 
of three-way fiber crossing, shows the greatest sensitivity imaging noise. In this level of severe 
noise, denoising is advantageous. (C) Scatter plots of the peak orientation in all white-matter tiles, 
with orientation of the noised (or denoised) image plotted against the orientation of the original 10 

image. (D) Histogram of the angular error. Denoising the data under severe levels of noise results 
in a dramatic decrease in the median absolute angular error, from 21° to 12°. 
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Fig. S15. 
The effect of staining variability. Two 2002 microns2 tiles (A and B) from the corpus callosum 
were binarized and used to simulate variable staining. Each cell was assigned a random gray-level 5 

value (see Methods). In addition, a predetermined fraction of the cells (0,10,20,30,40 or 50%) was 
chosen, whose gray-level value was scaled to produce lightly stained cells. For each fraction of 
lightly stained cells, 1,000 images were simulated, and Nissl-ST was used to extract the peak 
orientation for every image. Right: Boxplots showing the angular error for each fraction of lightly 
stained cells when compared with that of the binary image with no staining variability. Even for a 10 

high faction of lightly stained cells, the median angular error remains small (≤ 3°). Center lines 
indicate median values; notches indicate 95% confidence interval for the median; box limits 
indicate the interquartile range (IQR; 25th-75th percentiles); whiskers extend to the most extreme 
data points within 1.5 IQR outside the box; outliers are represented as red crosses. 
  15 
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Fig. S16. 
Tractography based on glial rows orientation. (A) Deterministic tractography of two fiber tracts 
in a coronal section of a human brain: the corpus callosum (CC) and a U-fiber around the 
occipitotemporal sulcus (OTS). Tractography was run on a vector field of peak orientation 5 

extracted from Nissl-ST in 2002 microns2 tiles, and seeded in two regions, as shown in the inset 
(white arrowheads). (B-C) Magnified views of the regions marked with boxes in (S), showing the 
underlying vector field visualized with ellipsoids. CG: Cingulum gyrus. FUG: Fusiform gyrus. 
ITG: Inferior temporal gyrus. SFG: Superior frontal gyrus.  
  10 
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Fig. S17. 
Nissl-ST reveals developmental differences in the pre- and post-natal macaque brain. In-
plane orientation maps (1002 microns2 tiles) in coronal slices of two rhesus macaques at two 
developmental stages: (A) prenatal (120 days embryonic) and (B) 14 days after birth. Middle 5 

columns show typical 4002 microns2 tiles in the corpus callosum (top tiles per row) and the superior 
frontal gyrus (bottom tiles per row). Remarkably, in the prenatal stage, the density of glial cells in 
the white-matter is extremely low, and it is hard to detect clear glial rows. This is further indicated 
by the smaller and less coherent glial-row orientation distribution functions (right column), 
compared with those of the 14-day-old macaque. At the macroscopic level, the orientations found 10 

at the prenatal stage are not randomly distributed, but rather hold some anatomical information. 
This might be attributed to the effect of blood vessels (black arrowheads), which occupy a larger 
fraction of the stained cells at this developmental stage. 
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Fig. S18. 
Generating a white-matter mask for visualization of in-plane orientations. (A) A coronal slice 
of a human brain from Dataset 1, shown with 2002 microns2 tiles. The gray-level value of each tile 5 

represents the 95th percentile of the size of connected components in the tile (see Methods). This 
yields a high contrast between gray and white matter. (B) An initial white-matter mask was 
generated automatically, by thresholding the image in (A) and filling holes. (C) The mask was 
corrected manually based on visual inspection, yielding the final white-matter mask. 
 10 

  



Submitted Manuscript: Confidential 
Template revised February 2021 

46 
 

 
Fig. S19.  
The expected outputs of running the example code. (A) The example code that we provide on 
GitHub downloads a section of a coronal image from a human brain (Dataset 2). The code produces 
a peak-orientation map calculated with 2002 microns2 tiles (B), as well as its corresponding 5 

coherence map (C). In addition, it produces a 2002 microns2 image tile with overlaid local 
orientations. (D) Finally, it runs tractography and visualizes the resulting corpus callosum 
streamlines (E). 
 
   10 
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