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Abstract Polygenic risk scores (PRSs) have been offered since 2019 to screen in vitro fertilization

embryos for genetic liability to adult diseases, despite a lack of comprehensive modeling of

expected outcomes. Here we predict, based on the liability threshold model, the expected

reduction in complex disease risk following polygenic embryo screening for a single disease. A

strong determinant of the potential utility of such screening is the selection strategy, a factor that

has not been previously studied. When only embryos with a very high PRS are excluded, the

achieved risk reduction is minimal. In contrast, selecting the embryo with the lowest PRS can lead

to substantial relative risk reductions, given a sufficient number of viable embryos. We

systematically examine the impact of several factors on the utility of screening, including: variance

explained by the PRS, number of embryos, disease prevalence, parental PRSs, and parental disease

status. We consider both relative and absolute risk reductions, as well as population-averaged and

per-couple risk reductions, and also examine the risk of pleiotropic effects. Finally, we confirm our

theoretical predictions by simulating ‘virtual’ couples and offspring based on real genomes from

schizophrenia and Crohn’s disease case-control studies. We discuss the assumptions and limitations

of our model, as well as the potential emerging ethical concerns.

Introduction
Polygenic risk scores (PRSs) have become increasingly well-powered, relying on findings from large-

scale genome-wide association studies for numerous diseases (Visscher et al., 2017; Wray et al.,

2013). Consequently, a growing body of research has examined the potential clinical utility of apply-

ing PRSs in the treatment of adult patients in order to identify those at heightened risk for common

late-onset diseases such as coronary artery disease or breast cancer (Britt et al., 2020; Khera et al.,

2018; Torkamani et al., 2018). Another potential application of PRSs is preimplantation screening

of in vitro fertilization (IVF) embryos, or polygenic embryo screening (PES). Polygenic embryo screen-

ing has been offered since 2019 (Treff et al., 2019a), but has been the focus of comparatively little
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empirical research, despite debate over ethical and social concerns surrounding the practice (Anom-

aly, 2020; Lázaro-Muñoz et al., 2021; Munday and Savulescu, 2021).

We have recently demonstrated that screening embryos on the basis of polygenic scores for

quantitative traits (such as height or intelligence) has limited utility in most realistic scenarios

(Karavani et al., 2019), and that the accuracy of the score is a more significant determinant of PES

utility for quantitative traits compared with the number of available embryos. On the other hand, a

series of four studies (Lello et al., 2020; Treff et al., 2019a; Treff et al., 2020; Treff et al., 2019b)

conducted by a private company providing PES services has suggested that PES for dichotomous

disease risk may have significant clinical utility. However, these studies examined a relatively limited

range of scenarios, primarily focusing on distinctions between sibling pairs discordant for illness, and

did not provide a comprehensive examination of various potential PES settings. Filling this gap is an

urgent need, as understanding the statistical properties of PES forms a critical foundation to any eth-

ical consideration (Lázaro-Muñoz et al., 2021).

Here, we use statistical modeling to examine the potential utility of PES for reducing disease risk,

with an aim toward informing future ethical deliberations. We focus on screening for a single com-

plex disease, and study a range of realistic scenarios, quantifying the role of parameters such as the

variance explained by the score, the number of available embryos, and the disease prevalence. We

show that a major determinant of the outcome of PES is the selection strategy, namely the way in

which an embryo is selected for implantation given the distribution of PRSs across embryos. We also

study the risk reduction conditional on parental PRSs or disease status, and consider the risk of

developing diseases not screened. Finally, we validate some of our predictions based on real

genomes of cases and controls for two common complex diseases.

Results

Model and selection strategies
For each analysis presented below, we assume that a couple has generated, by IVF, n viable embryos

such that each embryo, if implanted, would have led to a live birth. We focus on a single complex

disease, and assume that the corresponding PRS has been computed for each embryo. Given the

PRSs of the n embryos, a single embryo is selected for implantation based on a selection strategy.

The first strategy we consider is aimed only at avoiding high-risk embryos, consistent with studies

of the potential clinical utility of PRSs in adults (Chatterjee et al., 2016; Dai et al., 2019; Gib-

son, 2019; Khera et al., 2018; Mars et al., 2020; Mavaddat et al., 2019; Torkamani et al., 2018).

For example, the first case report presented on PES described the identification and exclusion of

embryos with extremely high (top 2-percentiles) PRS (Treff et al., 2019a). We term this strategy

‘high-risk exclusion’ (HRE: Figure 1A, upper panel). Under HRE, after high-risk embryos are set

aside, an embryo is randomly selected for implantation among the remaining available embryos. (In

the case that all embryos are high-risk, we assume a random embryo is selected among them.)

An alternative selection strategy is to use the embryo with the lowest PRS. Ranking and prioritiz-

ing embryos for implantation based on morphology is common in current IVF practice

(Bormann et al., 2020; Montag et al., 2013; Rhenman et al., 2015). If ranking is instead based on

a disease PRS, the embryo with the lowest PRS could be selected, without any recourse to high-risk

PRS thresholds. Such an approach was suggested by another recent publication from the same com-

pany (based on a multi-disease index), but outcomes were only examined in the context of sibling

pairs (Treff et al., 2020). We term the implantation of the embryo with the lowest PRS as ‘lowest-

risk-prioritization’ (LRP; Figure 1A, lower panel).

In the following, we describe the theoretical risk reduction that can be achieved under these

selection strategies. Our statistical approach is based on the liability threshold model (LTM; Fal-

coner, 1967). The LTM represents disease risk as a continuous liability, comprising genetic and envi-

ronmental risk factors, under the assumption that individuals with liability exceeding a threshold are

affected. The liability threshold model has been shown to be consistent with data from family-based

transmission studies (Wray and Goddard, 2010) and GWAS data (Visscher and Wray, 2015). Con-

sequently, we define the disease risk of a given embryo probabilistically, as the chance that, given its

PRS, its liability will cross the threshold at any point after birth (Figure 1B).
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We use the following notation. We define the predictive power of a PRS as the proportion of vari-

ance in the liability of the disease explained by the score (Dudbridge, 2013), and denote it as r2ps.

We quantify the outcome of PES in two ways: the relative risk reduction (RRR) is defined as

RRR ¼ K�P diseaseð Þ
K

¼ 1� P diseaseð Þ
K

, where K is the disease prevalence and P diseaseð Þ is the probability of

the selected embryo to be affected; the absolute risk reduction (ARR) is defined as K � P diseaseð Þ.
For example, if a disease has prevalence of 5% and the selected embryo has a probability of 3% to

be affected, the RRR is 40%, and the ARR is 2% points. We computed the RRR and ARR analytically

under each selection strategy, and for various values for the disease prevalence, the strength of the

PRS, embryo exclusion thresholds, and other parameters. The s mathematical basis of the calcula-

tions are summarized in Materials and methods, and detailed in the Appendix.

The risk reduction under the high-risk exclusion strategy
In Figure 2 (upper row), we show the relative risk reduction achievable under the HRE strategy with

n ¼ 5 embryos. Under the 2-percentile threshold (straight black lines), the reduction in risk is limited:

the RRR is <10% in all scenarios where r2ps � 0:1. Currently, r2ps » 0:1 (on the liability scale) is the upper

limit of the predictive power of PRSs for most complex diseases (Lambert et al., 2021), with the

exception of a few disorders with large-effect common variants (such as Alzheimer’s disease or type

1 diabetes) (Sharp et al., 2019; Zhang et al., 2020). In the future, more accurate PRSs are expected.

However, the common-variant SNP heritability is at most » 30% even for the most heritable diseases

such as schizophrenia and celiac disease (Holland et al., 2020; Zhang et al., 2018), and it was

recently suggested that r2ps ¼ 0:3 is the maximal realistic value for the foreseeable future

(Wray et al., 2021). At this value, relative risk reduction would be 20% for K ¼ 0:01, 9% for

K ¼ 0:05, and 3% for K ¼ 0:2. These gains achieved with HRE are small because the overwhelming

Figure 1. A schematic of the liability threshold model and polygenic embryo screening. (A) An illustration of the embryo selection strategies

considered in this report. In the figure, each embryo is shown as a filled circle, and embryos are sorted based on their predicted risk, that is, their

polygenic risk scores. Excluded embryos are shown in pink, and embryos that can be implanted in green. The risk reduction (RR) is indicated as the

difference in risk between a randomly selected embryo (if no polygenic scoring was performed) and the embryo selected based on one of two

strategies. In high-risk exclusion (HRE), the embryo selected for implantation is random, as long as its PRS is under a high-risk cutoff (usually the top few

PRS percentiles). If all embryos are high-risk, a random embryo is selected. In lowest-risk prioritization (LRP), the embryo with the lowest PRS is selected

for implantation. As we describe below, the LRP strategy yields much larger disease risk reductions. (B) An illustration of the liability threshold model

(LTM). Under the LTM, each disease has an underlying (unobserved) liability, and an individual is affected if the total liability is above a threshold. The

liability is composed of a genetic component and an environmental component, both assumed to be normally distributed in the population. For a

given genetic risk (represented here by the polygenic risk score), the liability is the sum of that risk, plus a normally distributed residual component

(environmental + genetic factors not captured by the PRS). For an individual with high genetic risk (bottom curve), even a modestly elevated (and thus,

commonly-occurring) liability-increasing environment will lead to disease. For an individual with low genetic risk (top curve), only an extreme

environment will push the liability beyond the disease threshold. Thus, disease risk reduction can be achieved with embryo screening by lowering the

genetic risk of the implanted embryo. (Note that for the purpose of illustration, panel (B) displays three discrete levels of genetic risk, although in

reality, the PRS is continuously distributed).
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Figure 2. The relative risk reduction across selection strategies and disease parameters. The relative risk reduction (RRR) is defined as

K � P diseaseð Þð Þ=K, where K is the disease prevalence, and P diseaseð Þ is the probability of the implanted embryo to become affected. The RRR is shown

for the high-risk exclusion (HRE) strategy in the upper row (panels (A–C)), and for the lowest-risk prioritization (LRP) in the lower row (panels (D–F)). See

Figure 1 for the definitions of the strategies. Results are shown for values of K ¼ 0:01; 0:05 and 0:2 (panels (A–C), respectively), and within each panel,

for variance explained by the PRS (on the liability scale) r2ps ¼ 0:05; 0:1, and 0.3 (legends). Symbols denote the results of Monte-Carlo simulations

(Materials and methods), where PRSs of embryos were drawn based on a multivariate normal distribution, assuming PRSs are standardized to have zero

mean and variance r2ps, and accounting for the genetic similarity between siblings (Equation 4 in the Appendix). In each simulated set of n sibling

embryos (n ¼ 5 for all simulations under HRE), one embryo was selected according to the selection strategy. The liability of the selected embryo was

computed by adding a residual component (drawn from a normal distribution with zero mean and variance 1� r2ps) to its polygenic score. The embryo

was considered affected if its liability exceeded zK , the (upper) K-quantile of the standard normal distribution. We repeated the simulations over 106

sets of embryos and computed the disease risk. In each panel, curves correspond to theory: Equation (31) in the Appendix for the HRE strategy, and

Equation (20) in the Appendix for the LRP strategy. Black straight lines correspond to the RRR achieved when excluding embryos at the top 2% of the

PRS (for HRE, upper panels) or for selecting the lowest risk embryo out of n ¼ 5 (for LRP, lower panels).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The relative risk reduction for the high-risk exclusion strategy, with n ¼ 10 available embryos.

Figure 2 continued on next page
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majority of affected individuals do not have extreme scores (Murray et al., 2021; Wald and Old,

2019).

Risk reduction increases as the threshold for exclusion is expanded to include the top quartile of

scores, and then reaches a maximum at » 25-50% under a range of prevalence and r2ps values. For all

these simulations, we set the number of available (testable) embryos to n ¼ 5 (Dahdouh, 2021;

Sunkara et al., 2011), although we acknowledge that the number of viable embryos may be much

lower for many couples seeking IVF services for infertility (Smith et al., 2015). Simulations show that

these estimates do not change much with increasing the number of embryos (see Figure 2—figure

supplement 1). This holds especially at more extreme threshold values, since most batches of n

embryos will not contain any embryos with a PRS within, for example, the top 2-percentiles.

It should be noted that the relative risk reduction does not increase monotonically under HRE.

Under our definition, whenever all embryos are high risk, an embryo is selected at random. Thus, at

the extreme case when all embryos (i.e. top 100%) are designated as high risk, an embryo is selected

at random at all times, and the relative risk reduction reduces to zero. We chose this definition of

the HRE strategy because it does not involve ranking of the embryos. However, we can also consider

an alternative strategy: if all embryos are high risk, the embryo with the lowest PRS is selected.

Here, the RRR is expected to increase when increasing the threshold and designating more embryos

as high risk, which we confirm in Figure 2—figure supplement 2. When the threshold is at 100% (all

embryos are high risk), this alternative strategy (which we do not further consider) reduces to the

lowest-risk prioritization strategy, which we study next.

The risk reduction under the lowest-risk prioritization strategy
The HRE strategy treats all non-high-risk embryos equally. In practice, we expect most, or even all,

embryos to be designated as non-high-risk, given the recent focus on the top PRS percentiles in the

literature (e.g. Khera et al., 2018). However, as we have seen, this strategy leads to very little risk

reduction. In Figure 2 (lower panels), we show the expected RRR for the lowest-risk prioritization

strategy, under which we prioritize for implantation the embryo with the lowest PRS, regardless of

any PRS cutoff. Indeed, under the LRP strategy, risk reductions are substantially greater than in HRE.

For example, with n ¼ 5 available embryos, RRR>20% across the entire range of prevalence and r2ps

parameters considered, and can reach » 50% for K � 5% and r2ps ¼ 0:1, and even »80% for K ¼ 1%

and r2ps ¼ 0:3. While RRR continues to increase as the number of available embryos increases, the

gains are quickly diminishing after n ¼ 5. On the other hand, Figure 2 also demonstrates that RRR

drops steeply if the number of embryos falls below n ¼ 5, although the lower bound for RRR when

just two embryos are available ( » 20% for many scenarios) is still comparable to the upper bound of

the HRE strategy for a greater number of embryos.

Effects of PES on dichotomous vs quantitative traits
Our results demonstrate that, contrary to our previous study reporting only small effects of PES for

quantitative traits (Karavani et al., 2019), PES can generate substantial relative risk reductions for

diseases under the LRP strategy. To understand the relation between continuous and binary traits,

consider an example involving IQ. Our estimate for the mean gain in IQ that could be achieved by

selecting the embryo with the highest IQ polygenic score is approximately » 2.5 IQ points

(Karavani et al., 2019). Now assume that individuals with IQ<70 (2 SDs below the mean) are consid-

ered ’affected’ according to a dichotomized trait of ’cognitive impairment’. Among individuals with

IQ<70, the proportion of individuals with IQ in the range [67.5,70] is 33.5% (assuming a normal dis-

tribution). A gain of 2.5 points would shift such offspring beyond the threshold for ’cognitive

impairment’, resulting in a corresponding 33.5% reduction in risk of being ’affected’. (Note that the

above explanation is intended to provide an intuition and ignores any variability in the gain.) Fig-

ure 2—figure supplement 3 utilizes statistical modeling (with r2ps derived from recent GWAS for

Figure 2 continued

Figure supplement 2. The relative risk reduction under the high-risk exclusion (HRE) strategy, using two different rules for how an embryo is selected
when all embryos are high risk.

Figure supplement 3. The relative risk reduction under the lowest-risk prioritization strategy for a dichotomized trait.
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intelligence [Savage et al., 2018]) to demonstrate that substantial risk reductions can be achieved

for a dichotomized trait, including when selecting out of just three embryos (panel (A)). Panel (B)

extends these results to data for LDL cholesterol (with r2ps derived from Weissbrod et al., 2021);

given n ¼ 5 embryos and the currently available PRS for LDL-C levels, risk reductions for ’high choles-

terol’ range from 40 to 60%, depending on the LDL level used to define the categorical trait. Thus,

while implanting the embryo with the most favorable PRS is expected to result in very modest gains

in an underlying quantitative trait, it is at the same time effective in avoiding embryos at the unfavor-

able tail of the trait.

Effects of parental PRS and disease status
We next examined the effects of parental PRSs on the achievable risk reduction (Materials and meth-

ods, see also Appendix), given that families with high genetic risk for a given disease may be more

likely to seek PES. Figure 3 demonstrates that, as expected, the HRE strategy shows greater relative

risk reduction as parental PRS increases, in particular when excluding only very high-scoring

embryos. This result follows directly from the fact that, on average, offspring will tend to have PRS

scores near the mid-parental PRS value. In contrast, the relative RR (although not the absolute RR;

see next section) for the LRP strategy somewhat declines as parental PRSs increase. Nevertheless,

the RRR for the LRP strategy remains greater than that for the HRE strategy across all parameters (as

expected by the definitions of these strategies).

It is also conceivable that families may be more likely to seek PES when one or both prospective

parents is affected by a given disease. In Figure 3—figure supplement 1, we plot the RRR under

the HRE and LRP strategies given that the parents are both healthy, both affected, or one of each

(where we fixed the prevalence K ¼ 5% and the heritability to h2 ¼ 40%). The figure illustrates that

parental disease status has relatively little impact on the expected RRR (especially in comparison to

the changes under HRE when conditioning on the actual parental PRSs). This is because, as long as

r2ps � 1; parental disease does not necessarily provide much information about parental PRS, and

thus does not strongly constrain the number of risk alleles available to each embryo.

Absolute vs relative risk
The above results were presented in terms of relative risk reductions. However, Figure 3—figure

supplement 1 also shows the baseline risk of an embryo of parents with a given disease status. For

example, when one of the parents is affected, selecting the lowest risk embryo out of n ¼ 5 (for a

realistic r2ps ¼ 0:1) reduces the risk from 10.0% to only 5.8%, thus nearly restoring the risk of the

future child to the population prevalence (5%). More generally, we plot the absolute risk reduction

(ARR) under the HRE and LRP strategies in Figure 3—figure supplement 2 for a few values of the

parental PRSs. Notably, while RRRs under the LRP strategy somewhat decrease with increasing

parental PRSs, the ARRs substantially increase, in accordance with an expectation that PES in

higher risk parents should eliminate more disease cases.

The clinical interpretation of these absolute risk changes will vary based on the population preva-

lence of the disorder (or the baseline risk of specific parents), and can offer a very different perspec-

tive on the magnitude of the effects (Gordis, 2014; Lázaro-Muñoz et al., 2021; Murray et al.,

2021). In particular, for a rare disease, large relative risk reductions may result in very small changes

in absolute risk. As an example, schizophrenia is a highly heritable (Sullivan et al., 2003) serious

mental illness with prevalence of at most 1% (Perälä et al., 2007). The most recent large-scale

GWAS meta-analysis for schizophrenia (Ripke et al., 2020) has reported that a PRS accounts for

approximately 8% of the variance on the liability scale. Our model shows that a 52% RRR is attain-

able using the LRP strategy with n ¼ 5 embryos. However, this translates to only »0.5 percentage

points reduction on the absolute scale: a randomly-selected embryo would have a 99% chance of

not developing schizophrenia, compared to a 99.5% chance for an embryo selected according to

LRP. In the case of a more common disease such as type 2 diabetes, with a lifetime prevalence in

excess of 20% in the United States (Geiss et al., 2014), the RRR with n ¼ 5 embryos (if the full SNP

heritability of 17% [Zhang et al., 2018] were achieved) is 43%, which would correspond to >8 per-

centage points reduction in absolute risk.
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Variability of the risk reduction across couples
The results depicted in Figure 2 describe the average risk reduction across the population, whereas

the results in Figure 3 demonstrate results for specific combinations of parental risk scores. How-

ever, it remains unclear whether the large average risk reductions observed under the LRP strategy

are driven by only a small proportion of couples. More generally, we would like to fully characterize

the dependence of the risk reduction on parental PRSs, which could be of interest to physicians and

couples in real-world settings.

Figure 3. The relative risk reduction when the polygenic risk scores of the parents are known. Panels (A)-(D) are for the high-risk exclusion (HRE)

strategy, while panels (E)-(H) are for the lowest-risk prioritization (LRP) strategy. All details are as in Figure 2, except the following. First, we fixed the

prevalence to K ¼ 5%. Second, in the simulations, we drew the PRS of each embryo as si ¼ xi þ c (i ¼ 1; . . . ; n), where xi is an embryo-specific

component (independent across embryos) and c is the shared component, also representing the mean parental PRS (Materials and methods). This is so

far as in Figure 2; however, here we assumed that c is given, equal to the average PRSs of the two parents. In each panel, we consider a different pair

of PRSs for the parents. For example, in panels (A) and (E), both parents (’par. 1’ and ’par. 2’) have PRS equal to the 50% percentile of the PRS

distribution; in panels (B) and (F), one parent has PRS equal to the 98% percentile of the PRS distribution, while the other has PRS equal to the 25%

percentile; and so on. Third, in the simulations, we computed the risk reduction (according to either strategy) relative to a baseline, obtained from the

same sets of simulations, when we always selected the first embryo. The baseline risk is indicated in each legend as ’bl’. Note that the baseline risk

depends on the variance explained by the PRS, because the parental PRSs are determined as percentiles of the population distribution of the score,

which has variance r2ps. Finally, we computed the theoretical disease risk for the HRE strategy using Equation (29) from the Appendix, the disease risk

for the LRP strategy using Equation (23), and the relative risk reduction (shown in curves) for both strategies using Equation (36).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The relative risk reduction when the parental disease status is known.

Figure supplement 2. The absolute risk reduction when the polygenic risk scores of the parents are known.
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To address these questions, we define a new risk reduction index, which we term the per-couple

relative risk reduction, or pcRRR. Informally, the pcRRR is the relative risk reduction conditional of

the PRSs of the couple. Mathematically, pcRRRðcoupleÞ ¼ 1� Ps diseasejcoupleð Þ
Pr diseasejcoupleð Þ. Here, Ps diseasejcoupleð Þ is

the probability that the (PRS-based) selected embryo is affected given the PRSs of the couple, and

Pr diseasejcoupleð Þ is similarly defined for a randomly selected embryo. Conveniently, the pcRRR

depends only on the average of the maternal and paternal PRSs, which we denote as c. We calcu-

lated pcRRR cð Þ analytically under the LRP strategy (the Appendix), as well as computed the distribu-

tion of pcRRR cð Þ across all couples in the population.

We show the distribution of pcRRR cð Þ in Figure 4, panels (A)-(C). The results demonstrate that

the pcRRR is relatively narrowly distributed around its mean, for all values of the prevalence (K) con-

sidered. The distribution becomes somewhat wider (and left-tailed) for the most extreme r2ps (0.3).

Thus, the population-averaged RRRs are not driven by a small proportion of the couples. In agree-

ment, the pcRRR depends only weakly on the average parental PRS, as can be seen in panels (D)-(F).

We note that the per-couple relative risk reduction is also an average, over all possible batches of

n embryos of the couple. One may thus ask what is the distribution of possible RRRs across these

batches. We provide a short discussion in the Appendix (Section 5.3).

Pleiotropic effects of selection on genetically negatively correlated
diseases
Polygenic risk scores are often correlated across diseases (Watanabe et al., 2019; Zheng et al.,

2017). Therefore, selecting based on the PRS of one disease may increase or decrease risk for other

diseases. While a full analysis of screening for multiple diseases is left for future work, our simulation

framework allows us to investigate the potential harmful effects of prioritizing embryos for one dis-

ease, in case that disease is negatively correlated with another disease (see the Appendix). We con-

sidered genetic correlations between diseases taking the values � ¼ �0:05;�0:1;�0:15;�0:2;�0:3ð Þ.
[The most negative correlation between two diseases reported in LDHub (https://ldsc.broadinstitute.

org/ldhub/) is �0.3, occurring between ulcerative colitis and chronic kidney disease (Zheng et al.,

2017).] In general, negative correlations between diseases are uncommon, and when they occur,

typical correlations are about �0.1.

Figure 5 shows the simulated risk reduction for the target disease and the risk increase for the

correlated disease, across different values of � and for three values of the prevalence K (panels (A)-

(C); assumed equal for the two diseases), all under the LRP strategy. In all panels, we used r2ps ¼ 0:1

for both diseases. The relative risk reduction for the target disease is, as expected, always higher in

absolute value than the risk increase of the correlated disease. For typical values of � ¼ �0:1 and

n ¼ 5, the relative increase in risk of the correlated disease is relatively small, at » 6% for K � 0:05

and »3.5% for K ¼ 0:2. However, for strong negative correlation (� ¼ �0:3) the increase in risk can

reach 22%, 16%, or 11% for K ¼ 0:01; 0:05 and 0:2, respectively. Thus, care must be taken in the

unique setting when the target disease is strongly negatively correlated with another disease.

Simulations based on real genomes from case-control studies
Our analysis so far has been limited to mathematical analysis and simulations based on a statistical

model. In principle, it would be desirable to compare our predictions to results based on real data.

However, clearly, no real genomic and phenotypic data exist that would correspond to our setting,

nor could such data be ethically or practically generated. Thus, we resort to a ‘hybrid’ approach, in

which we simulate the genomes of embryos based on real genomic data from case-control studies.

This approach is similar to the one we have previously used for studying polygenic embryo screening

for traits (Karavani et al., 2019).

Briefly, our approach is as follows. We consider separately two diseases with somewhat differing

genetic architecture: schizophrenia, which is amongst the most polygenic complex diseases, with no

common loci of high effect size, and Crohn’s disease, which is estimated to be less polygenic, and

has several common loci with much larger effects than those found in schizophrenia

(O’Connor et al., 2019). For each disease, we used genomes of unrelated individuals drawn from

case-control studies. For schizophrenia, we used »900 cases and » 1600 controls of Ashkenazi Jew-

ish ancestry, while for Crohn’s, we used » 150 cases and » 100 controls of European ancestry. We

then generated ’virtual couples’ by randomly mating pairs of individuals, regardless of sex. For each
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couple, we simulate the genomes of n hypothetical embryos, based on the laws of Mendelian inheri-

tance and by randomly placing crossovers according to genetic map distances. In parallel, we used

the ’parental’ genomes to learn a logistic regression model that predicts the disease risk given a

PRS computed based on existing summary statistics. We then computed the PRS of each simulated

embryo, and predicted the risk that embryo to be affected. Finally, we compared the risk of disease

Figure 4. The variability in the relative risk reduction across couples. We considered only the lowest-risk prioritization strategy. In panels (A–C), we

computed the theoretical distribution of the per-couple relative risk reduction, as explained in the Appendix Section 5. Briefly, the per-couple RRR is

defined as 1� Ps diseasejcð Þ=Pr diseasejcð Þ, where Ps diseasejcð Þ is the probability of an embryo selected based on its PRS to be affected and Pr diseasejcð Þ
is the probability of a randomly selected embryo to be affected, both conditional on the given couple. Our modeling suggests that c, which is the

average of the paternal and maternal PRSs, is the only determinant of the relative risk reduction of a given couple. We computed the distribution of the

per-couple RRR based on 104 quantiles of c, thus covering all hypothetical couples in the population. The number of embryos was set to n ¼ 5 in all

panels. Panels (A–C) correspond to prevalence of K ¼ 0:01; 0:05, and 0:02, respectively. In panels (D–F), we plot the theoretical RRR vs the quantile of

the average parental PRS c (see Appendix Section 5.1).

Lencz, Backenroth, et al. eLife 2021;10:e64716. DOI: https://doi.org/10.7554/eLife.64716 9 of 40

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.64716


between a population in which one embryo per couple is selected at random, vs. a population in

which one embryo is selected based on its PRS. For complete details, see Materials and methods.

In Figure 6, we plot the results for the relative risk reduction for schizophrenia (panels (A) and (B))

and Crohn’s disease (panels (C) and (D)). For each disease, we consider both the HRE and LRP strat-

egies. The analytical predictions closely match the empirical risk reductions generated in the simula-

tions, except for a slight overestimation of the RRR under the LRP strategy. Nevertheless, for both

schizophrenia and Crohn’s disease, we empirically observe that RRRs as high as » 45% are achiev-

able with n ¼ 5 embryos. In contrast, under the HRE strategy and when excluding embryos at the

top 2% risk percentiles, risk reductions are very small, in agreement with the theoretical predictions.

These results thus provide support to the robustness of our statistical model.

To further investigate the assumptions of our model, we test in Figure 6—figure supplement 1

two intermediate predictions. The first is that the variance of the PRSs of embryos of a given couple

should not depend on the average parental PRS. This is indeed the case (panels (A) and (C)), with

the only exception of an uptick of the variance at very low parental PRSs for schizophrenia. The sec-

ond prediction is that the variance across embryos is half of the variance in the parental population.

The empirical results again show reasonable agreement with the theoretical prediction (panels (B)

and (D)). The empirical variance (averaged across couples) was slightly lower than expected (by » 4%

for schizophrenia and »14% for Crohn’s), which may explain our slight overestimation of the

expected RRR under the LRP strategy.

Figure 5. The increase in the risk of a negatively correlated disease due to polygenic embryo screening. We simulated two diseases that have genetic

correlation �<0. We assumed that the prevalence K is equal between the two diseases (K ¼ 0:01; 0:05 and 0:2: panels (A)-(C), respectively), and that

r2ps ¼ 0:1 for both diseases. We simulated polygenic scores for the two diseases in n embryos in each of 106 couples. For each couple, we selected the

embryo either randomly or based on having the lowest PRS for the target disease. We then computed the risk of the embryo to have each disease as in

the main analyses, by drawing the residual component of the liability and designating the embryo as affected if the total liability exceeded a threshold.

The relative risk reduction of the target disease is shown as gray squares (and connecting lines) at the top of each plot. The relative risk increase for the

correlated disease is shown in colored circles (and connecting lines), with different colors corresponding to different values of � (see legend). Note that

the risk reduction for the target disease is independent of �.

Lencz, Backenroth, et al. eLife 2021;10:e64716. DOI: https://doi.org/10.7554/eLife.64716 10 of 40

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.64716


Discussion
In this paper, we used statistical modeling to evaluate the expected outcomes of screening embryos

based on polygenic risk scores for a single disease. We predicted the relative and absolute risk

reductions, either at the population level or at the level of individual couples. Our model is flexible,

Figure 6. The empirical relative risk reduction in simulated embryos based on genomes from case-control studies of schizophrenia and Crohn’s

disease. We used » 900 cases and » 1600 controls for schizophrenia, and » 150 cases and » 100 controls for Crohn’s. For each disease, we drew 5000

random ’virtual couples’, regardless of sex, but correcting for case/control ascertainment. For each such random couple, we simulated the genomes of

up to n ¼ 20 embryos (children) based on Mendelian segregation and published recombination maps. For each embryo, we computed the PRS for the

given disease (schizophrenia or Crohn’s) using the most recent summary statistics that exclude our cohort. We computed the risk of each embryo to be

affected based on a logistic regression model we learned in the ’parental’ cohort. Panels (A) and (B) show results for schizophrenia, while panels (C) and

(D) show results for Crohn’s. In panels (A) and (C), we plot the relative risk reduction (RRR) under the high-risk exclusion (HRE) selection strategy, in

which an embryo was randomly selected (out of n ¼ 5 embryos), unless its PRS was above a given percentile. The RRR was computed against a baseline

strategy of selection of an embryo at random and is plotted vs the exclusion percentile. In panels (B) and (D), we show the relative risk reduction under

the lowest-risk prioritization (LRP) strategy, in which the embryo with the lowest PRS was selected. We plot the RRR vs the number of embryos n. In all

panels, dots correspond to the results of simulations, and solid lines correspond to the theory. The theory was computed assuming prevalence of 1%

for schizophrenia and 0.5% for Crohn’s, and variance explained on the liability scale of r2ps ¼ 0:068 for schizophrenia r2ps ¼ 0:056 for Crohn’s (calculated

using the method of Lee et al., 2012). Further details are provided in Materials and methods.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The variance of the PRS across simulated embryos.

Lencz, Backenroth, et al. eLife 2021;10:e64716. DOI: https://doi.org/10.7554/eLife.64716 11 of 40

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.64716


allowing us to provide predictions across various values of, for example, the PRS strength, the dis-

ease prevalence, the parental PRS or disease status, and the number of available embryos. We pre-

sented a comprehensive analysis of the expected outcomes across various settings, including when

there is a concern about a second disease negatively correlated with the target disease. We finally

validated our modeling assumptions using genomes from case-control studies. Our publicly available

code could help researchers and other stakeholders estimate the expected outcomes for settings

we did not cover.

Our most notable result was that a crucial determinant of risk reduction is the selection strategy.

The use of PRS in adults has focused on those at highest risk (Chatterjee et al., 2016; Dai et al.,

2019; Gibson, 2019; Khera et al., 2018; Mars et al., 2020; Mavaddat et al., 2019;

Torkamani et al., 2018), for whom there may be maximal clinical benefit of screening and interven-

tion. However, as PRSs have relatively low sensitivity, such a strategy is relatively ineffective in reduc-

ing the overall population disease burden (Ala-Korpela and Holmes, 2020; Wald and Old, 2019).

Similarly, in the context of PES, exclusion of high-risk embryos will result in relatively modest risk

reductions. By contrast, selecting the embryo with the lowest PRS may result in large reductions in

relative risk.

While our prior work (Karavani et al., 2019) demonstrated that PES would have a small effect on

quantitative traits, here we show that a small reduction in the liability can lead to a large reduction in

the proportion of affected individuals. This is fundamentally a property of a threshold character with

an underlying normally distributed continuous liability. For such traits, most of the individuals in the

extreme of the liability distribution (i.e. the ones affected) are concentrated very near the threshold.

Thus, even slightly reducing their liability can move a large proportion of affected individuals below

the disease threshold. However, it should be noted that conventional thresholds for defining pres-

ence of disease may contain some degree of arbitrariness if the underlying distribution of patho-

physiology is truly continuous. Consequently, the effects on ultimate morbidity may depend on the

validity of the threshold itself (Davidson and Kahn, 2016).

We investigated how the range of potential PES outcomes varies with the PRSs of the parents or

with their disease status. Under the HRE strategy, if only excluding embryos at the few topmost risk

percentiles, the RRR is very small when the parents have low PRSs, and vice versa (Figure 3, panels

(A)-(D)). This is expected, as excluding high PRS embryos will be effective only for couples who are

likely to have many such embryos. Under the LRP strategy, the RRR depends only weakly on the

parental PRSs (Figure 3, panels (E)-(H), and Figure 4). Under both strategies, the relative risk reduc-

tion depends only weakly on the parental disease status, as parental disease status is a weak signal

for the underlying PRS. However, the absolute risk reduction increases substantially with increasing

parental PRSs (Figure 3—figure supplement 2) and when one or more parents are affected.

Our study has several limitations. First, our results assume an infinitesimal genetic architecture for

the disease, which may not be appropriate for oligogenic diseases and is not relevant for monogenic

disorders. However, it has been repeatedly demonstrated that common, complex traits and diseases

are highly polygenic (Gazal et al., 2017; Holland et al., 2020; O’Connor et al., 2019; Shi et al.,

2016; Zeng et al., 2018; Zeng et al., 2021). For example, it was recently estimated that for almost

all traits and diseases examined, the number of independently associated loci was at least »350,

reaching » 10,000 or more for cognitive and psychiatric phenotypes (O’Connor et al., 2019). This

provides more than sufficient variability for the PRS to attain a normal distribution in the population

and for our modeling assumptions to hold. Indeed, our empirical results for schizophrenia and

Crohn’s disease, two diseases with somewhat different genetic architectures, agreed reasonably well

with the theoretical predictions. However, our models would need to be substantially adjusted in the

presence of variants of very large effect, such as inherited or de novo coding variants or copy num-

ber variants, for example, as in autism (Satterstrom et al., 2020; Takumi and Tamada, 2018).

Additionally, our model relies on several simplifying statistical assumptions. For example, we did

not explicitly model assortative mating, although this seems reasonable given that for genetic dis-

ease risk, correlation between parents is weak (Rawlik et al., 2019), and given that our previous

study of traits showed no difference in the results between real and random couples

(Karavani et al., 2019). This deficiency is also partly ameliorated by our modeling of the risk reduc-

tion when explicitly given the parental PRSs or disease status. Another assumption we made is that

environmental influences on the child’s phenotype are independent of those that have influenced

the parents (when conditioning on the parental disease status). However, this is reasonable given
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that family-specific environmental effect have been shown to be weak for complex diseases

(Wang et al., 2017). For a discussion of additional model assumptions, see Appendix section 10.

Perhaps more importantly, we assumed throughout that r2ps represents the realistic accuracy of

the PRS achievable, within-family, in a real-world setting in the target population. However, the real-

istically achievable r2ps may be lower than reported in the original publications that have generated

the scores. For example, the accuracy of PRSs is sub-optimal when applied in non-European popula-

tions and across different socio-economic groups (Duncan et al., 2019; Mostafavi et al., 2020). A

PRS that was tested on adults may be less accurate in the next generation. Additionally, the variance

explained by the score, as estimated in samples of unrelated individuals, is inflated due to popula-

tion stratification, assortative mating, and indirect parental effects (Kong et al., 2018; Young et al.,

2019; Morris et al., 2020; Mostafavi et al., 2020). The latter, also called ’genetic nurture’, refers to

trait-modifying environmental effects induced by the parents based on their genotypes. These

effects do not contribute to prediction accuracy when comparing polygenic scores between siblings

(as when screening IVF embryos), and thus, the variance explained by polygenic scores in this setting

can be substantially reduced, in particular for cognitive and behavioral traits (Howe et al., 2021;

Selzam et al., 2019). Our risk reduction estimates thus represent an upper bound relative to real-

world scenarios. On the other hand, recent empirical work on within-family disease risk prediction

showed that the reduction in accuracy is at most modest (Lello et al., 2020), and within-siblings-

GWAS yielded similar results to unrelated-GWAS for most physiological traits (Howe et al., 2021).

Additionally, accuracy in non-European populations is rapidly improving due to the establishment of

national biobanks in non-European countries (Koyama et al., 2020; Vujkovic et al., 2020) and

improvement in methods for transferring scores into non-European populations (Amariuta et al.,

2020; Cai et al., 2021). Either way, the analytical results presented in this paper are formulated gen-

erally as a function of the achievable accuracy r2ps, and as such, users can substitute values relevant to

their specific target population and disease.

Another major limitation of this work is that we have only considered screening for a single dis-

ease. In reality, couples may seek to profile an embryo on the basis of multiple disease PRSs simulta-

neously, or based a global measure of lifespan or healthspan (Sakaue et al., 2020; Timmers et al.,

2020; Zenin et al., 2019). This is likely to reduce the per-disease risk reduction, as we have previ-

ously observed for quantitative traits (Karavani et al., 2019), but will also likely be more cost effec-

tive (Treff et al., 2020; Gwern, 2018). PES for multiple diseases requires the formulation and

analysis of new selection strategies and is substantially more mathematically complex; we therefore

leave it for future studies.

As our approach was statistical in nature, it is important to place our results in the context of real-

world clinical practice of assisted reproductive technology. The number of embryos utilized in the

calculations in the present study refers to viable embryos that could lead to live birth, which can be

substantially smaller than the raw number of fertilized oocytes or even the number of implantable

embryos at day 5. This consideration is especially important given the steep drop in risk reduction

when the number of available embryos drops below 5 (Figure 2). In fact, many IVF cycles do not

achieve any live birth. Rates of live birth decline with maternal age, in particular after age 40

(Smith et al., 2015) for women age >42, fewer than 4% of IVF cycles result in live births, making PES

impractical. On the other hand, success rates will likely be higher for young prospective parents who

seek PES to reduce disease risk but do not suffer from infertility. However, the prospect of elective

IVF for the purpose of PES in such couples must be weighed against the potential risks of these inva-

sive procedures to the mother and child (Dayan et al., 2019; Luke, 2017).

A different concern is whether the embryo biopsy (which is required for genotyping) may cause

risk to the viability and future health of the embryo. Several recent studies have demonstrated no

evidence for potential adverse effects of trophectoderm biopsy on rates of successful implantation,

fetal anomalies, and live birth (Awadalla et al., 2021; He et al., 2019; Riestenberg et al., 2021;

Tiegs et al., 2021). Moreover, no significant adverse effects have been detected for postnatal child

development in a recent meta-analysis (Natsuaki and Dimler, 2018). On the other hand, a number

of studies have reported that trophectoderm biopsy was associated with pregnancy complications,

including preterm birth, pre-eclampsia, and hypertensive disorders of pregnancy (Li et al., 2021;

Zhang et al., 2019; Makhijani et al., 2021). Specific variations in biopsy protocols may account for

differences in outcomes across studies (Rubino et al., 2020). Newly developed techniques may allow
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in the future to genotype an embryo non-invasively based on DNA present in spent culture medium,

although the accuracy of these methods is still being debated (Leaver and Wells, 2020). It should

also be noted that, throughout this manuscript, we assumed the use of single embryo transfer.

Finally, the results of our study invite a debate regarding ethical and social implications. For

example, the differential performance of PES across selection strategies and risk reduction metrics

may be difficult to communicate to couples seeking assisted reproductive technologies

(Cunningham et al., 2015; Wilkinson et al., 2019). Indeed, in the first PES case report, the couple

elected to forego any implantation despite the availability of embryos that were designated as nor-

mal risk (Treff et al., 2019a). These difficulties are expected to exacerbate the already profound eth-

ical issues raised by PES (as we have recently reviewed [Lázaro-Muñoz et al., 2021]), which include

stigmatization (McCabe and McCabe, 2011), autonomy (including ‘choice overload’ [Hadar and

Sood, 2014]), and equity (Sueoka, 2016). In addition, the ever-present specter of eugenics (Lom-

bardo, 2018) may be especially salient in the context of the LRP strategy. How to juxtapose these

difficulties with the potential public health benefits of PES is an open question. We thus call for

urgent deliberations amongst key stakeholders (including researchers, clinicians, and patients) to

address governance of PES and for the development of policy statements by professional societies.

We hope that our statistical framework can provide an empirical foundation for these critical ethical

and policy deliberations.

Materials and methods

Summary of the modeling results
In this section, we provide a brief overview of our model and derivations, with complete details

appearing in the Appendix.

Our model is follows. We write the polygenic risk scores of a batch of n IVF embryos as

s1; . . . ; snð Þ, and generate the scores as si ¼ xi þ c. The x1; . . . ; xnð Þ are embryo-specific independent

random variables with distribution xi ~N 0; r2ps=2
� �

, r2ps is the proportion of variance in liability

explained by the score, and c is a shared component with distribution c ~N 0; r2ps=2
� �

, also represent-

ing the average of the maternal and paternal scores.

In each batch, an embryo is selected according to the selection strategy. Under high-risk exclu-

sion, we select a random embryo with score s<zqrps, where zq is the 1� qð Þ-quantile of the standard

normal distribution. If no such embryo exists, we select a random embryo, but we also studied the

strategy when in such a case, the lowest scoring embryo is selected. Under lowest-risk prioritization,

we select the embryo with the lowest value of s. We computed the liability of the selected embryo

as y ¼ sþ e, where e~N 0; 1� r2ps

� �

. We designate the embryo as affected if y>zK , where zK is the

1� Kð Þ -quantile of the standard normal distribution and K is the disease prevalence. In the simula-

tions, we computed the disease probability (for each parameter setting) as the fraction of batches

(out of 106 repeats) in which the selected embryo was affected. We also simulated the score and dis-

ease status of a second disease, which is not used for selecting the embryo, but may be negatively

correlated with the target disease.

We computed the disease probability analytically using the following approaches. We first com-

puted the distribution of the score of the selected embryo. For lowest-risk prioritization, we used

the theory of order statistics. For high-risk exclusion, we first conditioned on the shared component

c, and then studied separately the case when all embryos are high-risk (i.e. have score s>zqrps), in

which the distribution of the unique component of the selected embryo (x) is a normal variable trun-

cated from below at zqrps � c, and the case when at least one embryo has score s<zqrps, in which x is

a normal variable truncated from above. We then integrated over the non-score liability components

(and over c in some of the settings) in order to obtain the probability of being affected. We solved

the integrals in the final expressions numerically in R.

We computed the risk reduction based on the ratio between the risk of a child of a random cou-

ple when the embryo was selected by PRS and the population prevalence. We also provide explicit

results for the case when the average parental PRS c is known. These expressions allowed us to com-

pute the distribution of risk reductions per-couple. Finally, when conditioning on the parental
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disease status, we integrated the disease probability of the selected embryo over the posterior dis-

tribution of the parental score and non-score genetic components. For full details and for an addi-

tional discussion of previous work and limitations, see the Appendix. R code is available at: https://

github.com/scarmi/embryo_selection (copy archived at swh:1:rev:

4cdc572582deb9b745e6844d96e0344914f4595e, Carmi, 2021) and https://github.com/dbacken-

roth/embryo_selection (copy archived at swh:1:rev:c65bf082fcb28434c271260560c4a4450dad76a3,;

Backenroth, 2021).

Simulations based on genomes from case-control studies
Our main analysis has been limited to mathematical modeling of polygenic scores and their relation

to disease risk. For obvious ethical and practical reasons, we could not validate our modeling predic-

tions with actual experiments. Nevertheless, we could perform realistic simulations based on

genomes from case-control studies, similarly to our previous work (Karavani et al., 2019). Our

approach is as follows. We consider, separately, two diseases: schizophrenia and Crohn’s. For schizo-

phrenia, we use »900 cases and » 1600 controls of Ashkenazi Jewish ancestry, while for Crohn’s, we

use »150 cases and » 100 controls from the New York area. For each disease, we use these individu-

als, who are unrelated, to generate ’virtual couples’ by randomly mating pairs of individuals. For

each such ’couple’, we simulate the genomes of n hypothetical embryos, based on the laws of Men-

delian inheritance and by randomly placing crossovers according to genetic map distances. In paral-

lel, we use the same genomes to derive a logistic regression model that predicts the risk of disease

given a PRS computed from the most recently available summary statistics (based on datasets not

including the samples in our test cohorts). We then compute the PRS of each simulated embryo, and

predict the risk of disease of that embryo. We finally compare the risk of disease between one ran-

domly selected embryo per couple vs one embryo selected based on PRS. In the paragraphs below,

we provide additional details.

The Ashkenazi schizophrenia cohort
The samples and the genotyping process were previously described (Lencz et al., 2013). Patients

were recruited from hospitalized inpatients at seven medical centres in Israel and were diagnosed

with schizophrenia or schizoaffective disorder. Samples from healthy Ashkenazi individuals were col-

lected from volunteers at the Israeli Blood Bank. All subjects provided written informed consent, and

corresponding institutional review boards and the National Genetic Committee of the Israeli Ministry

of Health approved the studies. DNA was extracted from whole blood and genotyped for ~1 million

genome-wide SNPs using Illumina HumanOmni1-Quad arrays. We performed the following quality

control steps. First, we removed samples with (1) genotyping call rate <95%; (2) one of each pair of

related individuals (total shared identical-by-descent (IBD) segments >700cM); and (3) sharing of less

than 15 cM on average with the rest of the cohort (indicating non-Ashkenazi ancestry). We removed

SNPs with (1) call rate <97%; (2) minor allele frequency <1%; (3) significantly different allele frequen-

cies between males and females (p-value threshold = 0.05/#SNPs); (4) differential missingness

between males and females (p<10�7) based on a c2 test; (5) deviations from Hardy-Weinberg equi-

librium in females (p-value threshold = 0.05/#SNPs); (6) SNPs in the HLA region (chr6:24–37M); and

(7) (after phasing) SNPs having A/T or C/G polymorphism, as we could not unambiguously link them

to corresponding effect sizes in the summary statistics. We finally used autosomal SNPs only. The

remaining number of individuals was 2526 (897 cases and 1629 controls), and the number of SNPs

was 728,505. We phased the genomes using SHAPEIT v2 (Delaneau et al., 2013).

The Mt Sinai Crohn’s disease cohort
Samples from subjects with Crohn’s disease were recruited from clinics by Mt Sinai providers. All

subjects provided written, informed consent in studies approved by the Mt Sinai Institutional Review

Board. Genotyping was performed at the Broad Institute using the Illumina Global Screening Array

(GSA) chip, as previously described (Gettler et al., 2021). We phased the genomes using Eagle

v2.4.1 (Loh et al., 2016). We then removed SNPs having A/T or C/G polymorphism. The remaining

number of individuals was 257 (154 cases and 103 controls) and the number of SNPs was 560,612.
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Simulating couples and embryos
For each disease, we generated 5000 unique couples by randomly pairing individuals (regardless of

their sex) according to the population prevalence of the disease. For example, for schizophrenia,

assuming a prevalence of 1%, a proportion 0.992 of the couples were both controls. Given a pair of

parents, we simulated 20 offspring (embryos) by specifying the locations of crossovers in each par-

ent. Recombination was modeled as a Poisson process along the genome, with distances measured

in cM using sex-averaged genetic maps (Bhérer et al., 2017). Specifically, for each parent and

embryo, we drew the number of crossovers in each chromosome from a Poisson distribution with

mean equal to the chromosome length in Morgan. We then determined the locations of the cross-

overs by randomly drawing positions along the chromosome (in Morgan). We mixed the phased

paternal and maternal chromosomes of the parent according to the crossover locations, and ran-

domly chose one of the resulting sequences as the chromosome to be transmitted to the embryo.

We repeated for the other parent, in order to form the diploid genome of the embryo.

Developing a polygenic risk score for schizophrenia
We used summary statistics from the most recent schizophrenia GWAS of the Psychiatric Genomics

Consortium (PGC) (Ripke et al., 2020). Note that we specifically used summary statistics that

excluded our Ashkenazi cohort. We used our entire cohort (2526 individuals) to estimate linkage dis-

equilibrium (LD) between SNPs, and performed LD-clumping on the summary statistics in PLINK

(Chang et al., 2015), with a window size of 250kb, a minimum r2 threshold for clumping of 0.1, a

minimum minor allele frequency threshold of 1%, and a maximum p-value threshold of 0.05. The

p-value threshold was chosen based on results from the PGC study. After clumping, the final score

included 23,036 SNPs. To construct the score, we used the effect sizes reported in the GWAS sum-

mary statistics, without additional processing.

Developing a polygenic risk score for Crohn’s disease
We used summary statistics derived from European samples available from https://www.ibdgenetics.

org/downloads.html (Liu et al., 2015), which did not include our cohort. We estimated LD using the

entire Crohn’s disease cohort, and performed LD-clumping and p-value thresholding using the same

parameters as for the schizophrenia cohort, as described above. The final score included 9,403

SNPs.

Calculating the PRS and the risk of an embryo
For each disease, we calculated polygenic scores for each parent and simulated embryo in PLINK,

using the –score command with default parameters. Using the polygenic scores of the parents, we

fitted a logistic regression model for the case/control status as a function of the polygenic scores.

We did not adjust for additional covariates: for schizophrenia, genetic ancestry is homogeneous in

our Ashkenazi cohort, and age and sex contributed very little to predictive power (increased AUC

from 0.695 only to 0.717). For Crohn’s, age was not available, and sex did not contribute to predic-

tive power (increased AUC from to 0.693 to 0.695). We adjusted the intercept of the logistic regres-

sion models to account for the case-control sampling (Rose and van der Laan, 2008). We then used

the model to predict the probability that a simulated embryo would develop the disease.

To determine the percentiles of the PRS for each disease, we derived an approximation to the

distribution of the PRS in the population by fitting a normal distribution to the scores in our dataset.

To take into account the case/control ascertainment, we weighted the case and control samples

according to the population prevalence of the disease (1% for schizophrenia [Perälä et al., 2007]

and 0.5% for Crohn’s [GBD 2017 Inflammatory Bowel Disease Collaborators, 2020]). We calcu-

lated the weighted mean and variance of the scores using the wtd.mean and wtd.var functions in the

HMisc package in R. A normal distribution with the resulting mean and variance was used to calcu-

late percentiles of the scores. The percentiles were then used to select (simulated) embryos under

the high-risk exclusion strategy (see below).

Calculating the risk reduction
For each disease, we performed the following simulations. For each selection strategy (either high-

risk exclusion or lowest-risk prioritization), we selected one embryo for each couple according to the
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strategy, and computed the probability of disease for the selected embryo. We then averaged the

risk over all couples. We similarly computed the risk under selection of a random embryo for each

couple. We computed the relative risk reduction based on the ratio between the risk under PRS-

based selection and the risk under random selection. To compare to the theoretical expectations,

we estimated the variance explained by the score on the liability scale using the method of

Lee et al., 2012. Specifically, we first computed the correlation between the observed case/control

status (coded as 1 and 0, respectively) and the PRS, and then used Equation (15) in Lee et al to con-

vert the squared correlation to the variance explained. We obtained r2ps ¼ 6:8% for schizophrenia,

which is close to the 7.7% reported in the original GWAS paper (Ripke et al., 2020), and r2ps ¼ 5:6%

for Crohn’s disease. We then substituted this value and prevalence of K ¼ 0:01 for schizophrenia and

K ¼ 0:005 for Crohn’s in our formulas for the relative risk reduction.
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Zhang WY, von Versen-Höynck F, Kapphahn KI, Fleischmann RR, Zhao Q, Baker VL. 2019. Maternal and neonatal
outcomes associated with trophectoderm biopsy. Fertility and Sterility 112:283–290. DOI: https://doi.org/10.
1016/j.fertnstert.2019.03.033, PMID: 31103283

Zhang Q, Sidorenko J, Couvy-Duchesne B, Marioni RE, Wright MJ, Goate AM, Marcora E, Huang KL, Porter T,
Laws SM, Sachdev PS, Mather KA, Armstrong NJ, Thalamuthu A, Brodaty H, Yengo L, Yang J, Wray NR, McRae
AF, Visscher PM, Australian Imaging Biomarkers and Lifestyle (AIBL) Study. 2020. Risk prediction of late-onset
Alzheimer’s disease implies an oligogenic architecture. Nature Communications 11:4799. DOI: https://doi.org/
10.1038/s41467-020-18534-1, PMID: 32968074

Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, Hemani G, Tansey K, Laurin C,
Pourcain BS, Warrington NM, Finucane HK, Price AL, Bulik-Sullivan BK, Anttila V, Paternoster L, Gaunt TR,
Evans DM, Neale BM, Early Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium. 2017. LD hub:
a centralized database and web interface to perform LD score regression that maximizes the potential of
summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33:272–279.
DOI: https://doi.org/10.1093/bioinformatics/btw613, PMID: 27663502

Lencz, Backenroth, et al. eLife 2021;10:e64716. DOI: https://doi.org/10.7554/eLife.64716 23 of 40

Research article Genetics and Genomics

https://doi.org/10.1016/j.ajhg.2018.06.002
https://doi.org/10.1016/j.ajhg.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29979983
https://doi.org/10.1101/2021.01.19.21249483
https://doi.org/10.1101/2021.01.19.21249483
https://doi.org/10.1016/j.fertnstert.2019.09.028
http://www.ncbi.nlm.nih.gov/pubmed/31703942
https://doi.org/10.1038/nrg3457
http://www.ncbi.nlm.nih.gov/pubmed/23774735
https://doi.org/10.1001/jamapsychiatry.2020.3049
https://doi.org/10.1001/jamapsychiatry.2020.3049
https://doi.org/10.1186/gm131
http://www.ncbi.nlm.nih.gov/pubmed/20181060
https://doi.org/10.1007/s10815-019-01451-8
http://www.ncbi.nlm.nih.gov/pubmed/31187331
https://doi.org/10.1073/pnas.1523297113
https://doi.org/10.1073/pnas.1523297113
http://www.ncbi.nlm.nih.gov/pubmed/26712022
https://doi.org/10.1126/science.aax3710
http://www.ncbi.nlm.nih.gov/pubmed/31604265
https://doi.org/10.1016/j.ajhg.2015.04.011
http://www.ncbi.nlm.nih.gov/pubmed/25983246
https://doi.org/10.1038/s41588-018-0101-4
http://www.ncbi.nlm.nih.gov/pubmed/29662166
https://doi.org/10.1038/s41467-021-21446-3
https://doi.org/10.1038/s41467-021-21446-3
http://www.ncbi.nlm.nih.gov/pubmed/33608517
https://doi.org/10.1038/s42003-019-0290-0
https://doi.org/10.1038/s42003-019-0290-0
http://www.ncbi.nlm.nih.gov/pubmed/30729179
https://doi.org/10.1038/s41588-018-0193-x
http://www.ncbi.nlm.nih.gov/pubmed/30104760
https://doi.org/10.1016/j.fertnstert.2019.03.033
https://doi.org/10.1016/j.fertnstert.2019.03.033
http://www.ncbi.nlm.nih.gov/pubmed/31103283
https://doi.org/10.1038/s41467-020-18534-1
https://doi.org/10.1038/s41467-020-18534-1
http://www.ncbi.nlm.nih.gov/pubmed/32968074
https://doi.org/10.1093/bioinformatics/btw613
http://www.ncbi.nlm.nih.gov/pubmed/27663502
https://doi.org/10.7554/eLife.64716


Appendix 1

1 The liability threshold model
The liability threshold model (LTM) is a classic model in quantitative genetics (Dempster and Lerner,

1950; Falconer, 1965; Lynch and Walsh, 1998) and is also commonly used to analyze modern data

(e.g. Wray and Goddard, 2010; So et al., 2011; Lee et al., 2011; Lee et al., 2012; Do et al., 2012;

Hayeck et al., 2017; Weissbrod et al., 2018; Hujoel et al., 2020). Under the LTM, a disease has an

underlying ‘liability’, which is normally distributed in the population, and is the sum of two compo-

nents: genetic and non-genetic (the environment). Further, the LTM assumes an ‘infinitesimal’, or

‘polygenic’ genetic basis, under which a very large number of genetic variants of small effect com-

bine to form the genetic component. An individual is affected if his/her total liability (genetic + envi-

ronmental) exceeds a threshold.

Mathematically, if we denote the liability as y, the LTM can be written as

y¼ gþ �; (1)

where y~Nð0;1Þ is a standard normal variable, g~Nð0;h2Þ is the genetic component, with variance

equals to the heritability h2, and �~Nð0;1� h2Þ is the non-genetic component. In practice, we cannot

measure the genetic component, but only estimate it imprecisely with a polygenic risk score,

denoted s. Following previous work (So et al., 2011; Do et al., 2012; Lee et al., 2012; Treff et al.,

2019a; Karavani et al., 2019), we assume that the LTM can be written, similarly to Equation (1), as

y¼ sþ e; (2)

where y~Nð0;1Þ as above, s~Nð0; r2psÞ, where r2ps is the proportion of the variance in liability explained

by the score, and e~Nð0;1� r2psÞ is the residual of the regression of the liability on s (and is uncorre-

lated with s), representing environmental effects as well as genetic factors not accounted for by the

score.

An individual is affected whenever his/her liability exceeds a threshold. The threshold is selected

such that the proportion of affected individuals is equal to the prevalence K, that is, it is equal to zK ,

the ð1� KÞ-quantile of a standard normal variable. Thus,

PðdiseaseÞ ¼ Pðy>zKÞ ¼K: (3)

The model is illustrated in Figure 1B of the main text.

2 A model for the scores of n IVF embryos
Consider the polygenic risk scores (for a disease of interest) of n IVF embryos of given parents. We

assume no information is known about the parents, or, in other words, that the parents are randomly

and independently drawn from the population. The scores of the embryos have a multivariate normal

distribution,

s¼ s1; . . . ; snð Þ ¼MVNð0n;SÞ; (4)

where the means form a vector 0n of n zeros, and the n� n covariance matrix is

S¼ r2ps

1
1

2
. . . 1

2

1

2
1 . . . 1

2

. . . . . . . . . . . .
1

2

1

2
. . . 1

0

B

B

B

@

1

C

C

C

A

: (5)

The diagonal elements of the matrix are simply the variances of the individual scores of each

embryo. The off-diagonal elements represent the covariance between the scores of the embryos,

who are genetically siblings. Based on standard quantitative genetic theory (Lynch and Walsh,

1998) (see also our previous paper [Karavani et al., 2019]), the covariance between the scores of

two siblings is Cov si; sj
� �

¼ 1

2
Var sð Þ, and hence the off-diagonal elements follow. [The non-score
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components (the e terms in Equation (2)) are also correlated. The correlation between the genetic

components of e is modeled in Section 6. Modeling the correlation between the environmental com-

ponents was unnecessary in this paper – see Section 10].

As we showed in our previous work (Karavani et al., 2019), the scores can be written as a sum of

two independent multivariate normal variables, s ¼ xþ c, with

x ¼ ðx1; . . . ;xnÞ~MVN 0n;
r2ps

2
In

 !

and

c ¼ ðc1; . . . ;cnÞ~MVN 0n;
r2ps

2
Jn

 !

;

(6)

where 0n is a vector of zeros of length n, In is the n� n identity matrix, and Jn is the n� n matrix of

all ones. The xi’s and ci’s have the same marginal distribution, namely normal with zero mean and

variance r2ps=2 each. However, the xi’s are independent, whereas c has a constant covariance matrix,

which means that the ci’s are n identical copies of the same random variable,

c1 ~N 0;
r2ps

2

 !

andc2 ¼ c3 ¼ �� � ¼ cn ¼ c1 � c: (7)

Thus, for each embryo

i ¼ 1; . . . ; n,

si ¼ xiþ c: (8)

2.1 An alternative interpretation: conditioning on the average parental
scores

The decomposition of the score in Equation (8) can also be interpreted as conditioning on the aver-

age score of the parents. To see that, write the maternal score as sm and the paternal score as sf.

The variables ðsi; sm; sf Þ have a multivariate normal distribution,

ðsi; sm; sf Þ~MVN

0

0

0

0

B

@
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C

A
;
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2
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2
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r2ps 0
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: (9)

In the above equation, the variances of all scores are equal to r2ps. The covariance terms are

Cov si; smð Þ ¼Cov si; sf
� �

¼ 1

2
Var sð Þ ¼ r2ps

2
, as the relatedness between between parent and child is the

same as for a pair of siblings. We assume no correlation between the scores of the parents (i.e. no

assortative mating, see Section 10 for a discussion). We are now interested in the conditional density

of si given sm and sf. Using standard results for multivariate normal distributions, the conditional den-

sity of si is Nð�;s2Þ, where,

� ¼S12S
�1

22

sm

sf

� �

;

s2 ¼S11�S12S
�1

22
S21;

(10)

and

S11 ¼ r2ps;S12 ¼ r2ps
2

r2ps
2

� �

;S21 ¼
r2ps
2

r2ps
2

0

@

1

A;S22 ¼
r2ps 0

0 r2ps

 !

: (11)

These matrices are the blocks forming the covariance matrix in Equation (9). Carrying out the

matrix calculations, we obtain
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� ¼ smþ sf

2
;

s2 ¼
r2ps

2
:

(12)

Thus,

si ~N
smþ sf

2
;
r2ps

2

 !

�Nðc; r2ps=2Þ; (13)

where we defined the shared component c� smþsf
2

as the average parental score. The variance of c

itself, across the population, is Var
smþsf

2

� �

¼ 2Var sð Þ
4

¼ r2ps=2. Thus, c~Nð0; r2ps=2Þ. In a given family, c is the

same across all embryos. Thus, Equation (13) is equivalent to si ¼ cþ xi, with c~Nð0; r2ps=2Þ and

xi ~Nð0; r2ps=2Þ being an embryo-specific component.

An analogous result holds for the total genetic component of the embryo, gi, simply by replacing

the proportion of variance explained by the score (r2ps) with the heritability (h2). In other words, if gm

and gf are the maternal and paternal genetic components, respectively, then

gi ~N
gmþ gf

2
;
h2

2

� �

: (14)

3 The disease risk when implanting the embryo with the lowest risk

We assume next that we select for implantation the embryo with the lowest polygenic risk score for

the disease of interest. Our goal will be to calculate the probability of that embryo to be affected.

Since si ¼ xi þ c, the score of the selected embryo satisfies

smin ¼minðx1þ c; . . . ;xnþ cÞ
¼minðx1; . . . ;xnÞþ c

¼ xmin þ c;

(15)

where we defined xmin ¼minðx1; . . . ;xnÞ. Denote by i� the index of the selected embryo (xi� ¼ xmin).

The liability of the embryo with the lowest risk is thus

yi� ¼ smin þ ei�

¼ xminþ cþ ei�

¼ xminþ~e;

(16)

where ei is the non-score component of embryo i, and ~e¼ cþ ei� . We have,

Var ~eð Þ ¼ Var cð ÞþVar ei�ð Þ ¼
r2ps

2
þð1� r2psÞ ¼ 1�

r2ps

2
: (17)

Therefore, the liability of the selected embryo can be written as a sum of two (independent) vari-

ables: xmin, which is the minimum of n independent (zero mean) normal variables with variance r2ps=2

each; and ~e, which is a normal variable with (zero mean and) variance 1� r2ps=2.

The distribution of xmin can be computed based on the theory of order statistics,

Pðxmin>tÞ ¼ Pðx>tÞ½ �n¼ 1�F
t

rps=
ffiffiffi

2
p

 !" #n

: (18)

In the above equation, the minimum of n variables is greater than t if and only if all variables are

greater than t. The distribution of each x is normal with zero mean and variance r2ps=2, and hence

Pðx>tÞ ¼ 1�F t

rps=
ffiffi

2
p

� �

, where Fð�Þ is the cumulative probability distribution (CDF) of a standard nor-

mal variable.
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We can now compute the probability of the selected embryo to be affected by demanding that

the total liability is greater than the threshold zK . Denote the probability of disease as PsðdiseaseÞ (s
stands for selected). Conditional on ~e,

Psðdisease j~eÞ ¼ Pðyi�>zK j~eÞ
¼ Pðxminþ~e>zKÞ
¼ Pðxmin>zK �~eÞ

¼ 1�F
zK �~e

rps=
ffiffiffi

2
p

 !" #n

;

(19)

where in the fourth line, we used Equation (18). Next, denote by f ð~eÞ the density of ~e, and by fð�Þ
the probability density function of a standard normal variable. Given that ~e~Nð0;1� r2ps=2Þ,

PsðdiseaseÞ ¼
Z

¥

�¥
Psðdisease j~eÞf ð~eÞd~e

¼
Z

¥

�¥
1�F

zK �~e

rps=
ffiffiffi

2
p

 !" #n

1
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q f
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q
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1

C

A
d~e

¼
Z

¥

�¥
1�F

zK � t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps=2
q

rps=
ffiffiffi

2
p

0

@

1

A

2

4

3

5

n

fðtÞdt:

(20)

In the third line, we changed variables: t¼ ~e=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps=2
q

. Equation (20) is our final expression for

the probability of the embryo with the lowest score to be affected.

3.1 The risk reduction when conditioning on the mean parental score

Consider the case when c is given, or, in other words, when we know the mean parental polygenic

score. Let us compute the disease risk in such a case. We start from Equation (16),

yi� ¼ sminþ ei�

¼ xmin þ cþ ei� :
(21)

Then,

Psðdisease jc;ei�Þ ¼ Pðyi�>zK jei�Þ
¼ Pðxmin þ cþ ei�>zKÞ
¼ Pðxmin>zK � c� ei�Þ

¼ 1�F
zK � c� ei�

rps=
ffiffiffi

2
p

 !" #n

;

(22)

where in the last line, we used Equation (18).

Finally, with f ðei�Þ denoting the density of ei� , and recalling that ei� ~N 0; 1� r2ps

� �

,

Psðdisease jcÞ ¼
Z

¥

�¥
Psðdisease jc;ei�Þf ðei�Þdei�

¼
Z

¥

�¥
1�F

zK � c� ei�

rps=
ffiffiffi

2
p

 !" #n

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q f
ei�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

0

B

@

1

C

A
dei�

¼
Z

¥

�¥
1�F

zK � c� t
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

rps=
ffiffiffi

2
p

0

@

1

A

2

4

3

5

n

fðtÞdt;

(23)

where in the last line, we changed variables, t¼ ei�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

. Equation (23) thus provides the proba-

bility of disease when we are given the mean parental score c.
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4 The disease risk when excluding high-risk embryos
We now consider the selection strategy in which the implanted embryo is selected at random, as

long as its risk score is not particularly high. Specifically, we assume that whenever possible, embryos

at the top q risk percentiles are excluded. When all embryos have high risk, we assume that a ran-

dom embryo is selected. Let zq be the ð1� qÞ-quantile of the standard normal distribution. The vari-

ance of the score is r2ps, and therefore, the score of the selected embryo must be lower than zqrps.

To compute the disease risk in this case, we first condition on the shared, family-specific compo-

nent c. We later integrate over c to derive the risk across the population. Denote by xs the value of x

for the selected embryo, and for the moment, also condition on xs. We have,

Psðdisease jxs;cÞ ¼ Pðy>zK jcÞ
¼ Pðsþ e>zK jcÞ
¼ Pðxsþ cþ e>zKÞ
¼ Pðe>zK � xs� cÞ

¼ 1�F
zK � xs� c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

0

B

@

1

C

A
;

(24)

To obtain Psðdisease jcÞ, we need to integrate over f ðxsÞ, the density of xs. In fact, f ðxsÞ is a mixture

of two distributions, depending on whether or not all embryos were high risk. Denote by H the

event that all embryos are high risk, and let us first compute the probability of H. Recall that given c,

the scores of all embryos, si ¼ xiþ c, are independent. The event H is equivalent to the intersection

of the independent events fsi>zqrpsg for i¼ 1; . . . ;n. Thus, recalling that xi ~Nð0; r2ps=2Þ,

PðHÞ ¼
Y

n

i¼1

Pðsi>zqrpsÞ

¼
Y

n

i¼1

Pðxi þ c>zqrpsÞ

¼
Y

n

i¼1

Pðxi>zqrps � cÞ

¼ 1�F
zqrps� c

rps=
ffiffiffi

2
p

 !" #n

:

(25)

Given H, we know that all scores were higher than the cutoff, i.e., that xi>zqrps � c for all

i¼ 1; . . . ;n. An embryo is then selected at random. Thus, xs, the value of x of the selected embryo, is

a realization of a normal random variable truncated from below. Specifically, if fxð�Þ is the uncondi-

tional density of x, then for xs>zqrps � c,

f ðxs jHÞ ¼ fxðxsÞ
Pðx>zqrps� cÞ ¼

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

1�F
zqrps�c

rps=
ffiffi

2
p

� � : (26)

In the case H did not occur, we select an embryo at random among embryos with score si<zqrps,

that is, xi<zqrps � c. The density of xs is again, analogously to the above case, a realization of a normal

random variable, but this time truncated from above. For

xs<zqrps � c,

f ðxs jHÞ ¼ fxðxsÞ
Pðx<zqrps� cÞ ¼

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

F
zqrps�c

rps=
ffiffi

2
p

� � : (27)

Using these results, we can write the density of xs when conditioning only on c,
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f ðxsÞ ¼ f ðxs jHÞPðHÞþ 0 �PðHÞ for xs>zqrps� c

0 �PðHÞþ f ðxs jHÞPðHÞ for xs<zqrps� c

(

¼

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

1�F
zqrps�c

rps=
ffiffi

2
p

� � 1�F
zqrps�c

rps=
ffiffi

2
p

� �h in

for xs>zqrps� c

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

F
zqrps�c

rps=
ffiffi

2
p

� � 1� 1�F
zqrps�c

rps=
ffiffi

2
p

� �h inn o

for xs<zqrps� c

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(28)

We can now integrate over all xs, still conditioning on c, and using Equation (24) and some

algebra,

Psðdisease jcÞ ¼
Z

¥

�¥
f ðxsÞPsðdisease jxs;cÞdxs

¼
Z zqrps�c

�¥

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

F
zqrps�c

rps=
ffiffi

2
p

� � 1� 1�F
zqrps� c

rps=
ffiffiffi

2
p

 !" #n( )

1�F
zK � xs� c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

0

B

@

1

C

A

2

6

4

3

7

5
dxs

þ
Z

¥

zqrps�c

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

1�F
zqrps�c

rps=
ffiffi

2
p

� � 1�F
zqrps� c

rps=
ffiffiffi

2
p

 !" #n

1�F
zK � xs� c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

0

B

@

1

C

A

2

6

4

3

7

5
dxs

¼
Z

¥

�¥
hðt;gðcÞÞ�ðt;cÞdt;

(29)

where we defined

�ðt;cÞ ¼fðtÞ 1�F
zK�trps=

ffiffi

2
p

�c
ffiffiffiffiffiffiffiffi

1�r2ps

p
� �� �

;

hðt;gÞ ¼
1� 1�F gð Þ½ �n

F gð Þ for t<g;

1�F gð Þ½ �n�1
for t>g:

( )

; and

gðcÞ ¼
ffiffiffi

2
p

zq � c

rps=
ffiffi

2
p :

(30)

Equation (29) provides an expression for the probability of a disease given the mean parental

score c.

Finally, we can integrate over all c in order to obtain the probability of disease in the population.

Recalling that c~Nð0; r2ps=2Þ and denoting its density as f ðcÞ, and again after some algebra,

PsðdiseaseÞ ¼
Z

¥

�¥
Psðdisease jcÞf ðcÞdc

¼
Z

¥

�¥
fðuÞ

Z

¥

�¥
hðt;bðuÞÞzðu; tÞdt

� �

du;

(31)

where we defined

zðu; tÞ ¼fðtÞ 1�F
zK �ðuþ tÞrps=

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

0

B

@

1

C

A

2

6

4

3

7

5

bðuÞ ¼
ffiffiffi

2

p
zq � u;

(32)

and hðt; �Þ was defined in Equation (30) above. Equation (31) is our final expression for the proba-

bility of an embryo to be affected after being selected randomly among non-high-risk embryos.

5 The relative risk reduction
We define the relative risk reduction (RRR) as follows. We are given the prevalence K and the proba-

bility of the selected embryo to be affected PsðdiseaseÞ (averaged over the population). Then,
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RRR¼K�PsðdiseaseÞ
K

¼ 1�PsðdiseaseÞ
K

: (33)

The absolute risk reduction (ARR) is similarly defined as K�PsðdiseaseÞ. For example, if a disease

has prevalence of 5% and an embryo selected based on PRS has an average probability of 3% to be

affected, the relative risk reduction is 40%, while the absolute risk reduction is 2% points.

To use Equation (33), PsðdiseaseÞ is given by Equation (20) for the lowest-risk prioritization strat-

egy, and by Equation (31) for the high-risk exclusion strategy. We solve the integrals in these equa-

tions numerically in R using the function integrate (see Section 11).

5.1 The per-couple relative risk reduction

The RRR, as defined in Equation (33), is the (complement of the) ratio between two average risks:

the average risk of a random couple that would select an embryo based on its PRS, and the average

risk of a random couple that would select an embryo at random. It can also be seen as the relative

risk reduction between the risks in two hypothetical ‘populations’: one in which all embryos are

selected based on a PRS-based strategy, and one in which all embryos are selected at random.

However, a shortcoming of the population-level RRR definition is that it does not provide informa-

tion on the risk reduction expected for individual couples. In other words, a given couple may wish

to know the extent to which they can reduce disease risk in their children by electing to select an

embryo based on PRS. Conveniently, the only relevant information that characterizes the potential

risk reduction for a given couple (in the absence of phenotypic data) is c, the average parental score.

We define the per-couple relative risk reduction, or pcRRRðcÞ, as

pcRRRðcÞ ¼ Prðdisease jcÞ�Psðdisease jcÞ
Prðdisease jcÞ

¼ 1�Psðdisease jcÞ
Prðdisease jcÞ

; (34)

where Prðdisease jcÞ is the ‘baseline’ risk, that is, the probability of disease of a random embryo (r

stands for random; this can also be seen as the risk in natural procreation). Note that we can similarly

define the absolute risk reduction (ARR) as Prðdisease jcÞ�Psðdisease jcÞ.
We have already computed Psðdisease j cÞ for the two selection strategies (Equations (23) and

(29)). To compute Prðdisease j cÞ, we write the liability of a random embryo as

y ¼ sþ e

¼ xþ cþ e

¼ ~xþ c;

(35)

where we defined ~x¼ xþ e. Varð~xÞ ¼VarðxÞþVarðeÞ ¼ r2ps=2þ 1� r2ps ¼ 1� r2ps=2, and thus,

~x~N 0;1� r2ps=2
� �

. The conditional probability of disease is

Prðdisease jcÞ ¼ Pðy>zK jcÞ
¼ Pð~xþ c>zKÞ
¼ Pð~x>zK � cÞ

¼ 1�F
zK � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps=2
q

0

B

@

1

C

A
:

(36)

5.2 The distribution of the per-couple relative risk reduction

We can compute the probability density of pcRRRðcÞ across all couples in the population, fpcðxÞ, as
follows,

fpcðxÞ ¼
Z

¥

�¥
d x� pcRRRðcÞð Þf ðcÞdc; (37)

where dðxÞ is Dirac’s delta function, c is the parental average score, and f ðcÞ~N 0; r2ps=2
� �

is its
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density. For computing fpcðxÞ numerically, we sum over 104 quantiles of c (which by definition have

equal probability), and then compute the probability of the pcRRR to have value within each bin,

PðpcRRR 2 ½r1; r2�Þ ¼
1

104

X

10
4

i¼1

1pcRRRðciÞ2½r1 ;r2 �; (38)

where 1 is the indicator variable, and ci is the i=104 quantile of c (a value such that c is less than ci
with probability ði� 0:5Þ=104).

The average pcRRR across all couples is

pcRRRh i ¼
Z

¥

�¥
pcRRRðcÞf ðcÞdc: (39)

Numerically,

pcRRRh i ¼ 1

104

X

10
4

i¼1

pcRRRðciÞ: (40)

Note that Equation (39) is an average of ratios. This is in contrast to Equation (33), which a ratio

of averages. As such, those average risk reductions are not expected to be identical. Empirically,

given that pcRRRðcÞ depends only weakly on c, we found that differences were small. For example,

pcRRRh i was higher than the RRR from Equation (33) by »0:01 for r2ps � 0:1 (for K ¼ 0:01;0:05;0:2);

for example, when K ¼ 0:05 and r2ps ¼ 0:1, pcRRRh i was 0.48, while the RRR was 0.47. Differences

were larger for r2ps ¼ 0:3; for example, for K ¼ 0:05, pcRRRh i was 0.77, while the RRR was 0.72.

5.3 The per-batch relative risk reduction

The pcRRR, that is, Equation (34), can be interpreted as follows. A given couple can choose

between two options: either generate embryos by IVF and select an embryo based on its PRS, or

select an embryo at random (=conceive naturally). The pcRRR quantifies the risk reduction between

the outcomes under these two choices. For each choice, the risk is computed by averaging over all

possible embryos that might have been generated in an IVF cycle. However, one may also wish to

quantify the variability of the outcome for a given couple. This could be accomplished as follows: for

each couple and for each batch of n embryos, compute the relative risk reduction when selecting an

embryo based on PRS vs when selecting at random. We define this quantity as the per-batch relative

risk reduction, or pbRRR.

Modeling the pbRRR is straightforward using our framework. Given the scores of the embryos,

s1; . . . ; sn, the selected embryo is immediately determined for the lowest-risk prioritization strategy.

For the high-risk exclusion strategy, the selected embryo can be, with equal probability, any of the

embryos that are not high risk (or any embryo if all embryos are high risk). For random selection, the

selected embryo can be any embryo with equal probability. Given the score of the selected embryo,

si� , and given the non-score component, e ~Nð0; 1� r2psÞ, the probability of disease of the selected

embryo is

PsðdiseaseÞ ¼ Pðy>zK j si�Þ
¼ Pðsi� þ e>zKÞ
¼ Pðe>zK � si�Þ

¼ 1�F
zK � si�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ps

q

0

B

@

1

C

A
:

(41)

The probability density of the scores is then given by Equation (13). The distribution of the

pbRRR across batches of embryos can then be computed by integrating over all possible sets of n

scores, similarly to Equation (37). However, this would be tedious in practice, and we do not pursue

this direction here.
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6 The risk reduction conditional on family history
In the following, we compute the relative risk reduction when the disease status of the parents is

given.

6.1 Model

Let us rewrite our model for the liability as

y¼ sþwþ �: (42)

Here, w represents all genetic factors not included in the score. We keep track of both s and w,

because both are inherited, and hence, information on the disease status of the parents will be infor-

mative on their values in children (see below). However, we need to track each term separately

because selection is only based on s. As in Section 1, we assume s, w, and � are independent,

y~Nð0;1Þ, s~Nð0; r2psÞ, and �~Nð0;1� h2Þ, and thus w~Nð0;h2 � r2psÞ.
We derive the risk to the embryos in two main steps. First, we assume that the values of s and w

are known for each parent, and compute the risk of the embryo under each selection strategy (low-

est-risk prioritization, high-risk exclusion, or random selection). Then, we derive the posterior distri-

bution of the parental genetic components given the parental disease status, and integrate over

these components to obtain the final risk estimate.

6. 2 The risk of the selected embryo given its score

Denote the maternal score as sm and the paternal score as sf, denote similarly wm and wf, and

assume that they are given. Also denote gm ¼ sm þ wm and gf ¼ sf þ wf . As we explained in Section

2.1, for any child i, the distribution of the score si is

si ~N
smþ sf

2
;
r2ps

2

 !

or si ¼ cþxi; (43)

where c¼ ðsmþ sf Þ=2 and xi ~Nð0; r2ps=2Þ. Similarly, the distribution of the non-score genetic compo-

nent is

wi ~N
wmþwf

2
;
h2� r2ps

2

 !

or wi ¼
wmþwf

2
þvi; (44)

where vi ~N 0; ðh2 � r2psÞ=2
� �

.

Given the parental genetic components, we can write the liability of each embryo as, for

i ¼ 1; . . . ; n,

yi ¼
smþ sf

2
þ xiþ

wmþwf

2
þ viþ �i; (45)

where �i ~Nð0;1� h2Þ. All the three random variables in the above equation (xi, vi, and �i) are inde-

pendent, and xi and vi are each independent across embryos. (It is not necessary to specify whether

the �i are independent.) Denote the event that embryo i is affected as Di, and condition on the value

of xi for that embryo. The probability of disease is

P Di j sm;wm; sf ;wf ;xi
� �

¼ Pðyi>zK j sm;wm; sf ;wf ;xiÞ

¼ P
smþ sf

2
þ xiþ

wmþwf

2
þ vi þ �i>zK

� �

¼ P viþ �i>zK � smþ sf

2
�wmþwf

2
� xi

� �

¼ 1�F
zK � smþsf

2
� wmþwf

2
� xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2=2� r2ps=2
q

0

B

@

1

C

A
:

(46)

The last line holds because Var viþ �ið Þ ¼ ðh2 � r2psÞ=2þð1� h2Þ ¼ 1� h2=2� r2ps=2.
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We henceforth denote Ds as the event that the selected embryo is affected. In the next three sub-

sections, we integrate the probability of the disease over xi, where the distribution of xi will vary

depending on the selection strategy. This will give us the disease risk given the parental genetic

components.

6.3 Selecting the lowest-risk embryo

Denote by xi� the embryo-specific component of the embryo with the lowest such component. Recall

that for each embryo, xi ~Nð0; r2ps=2Þ. We can use the theory of order statistics, as in previous sec-

tions, to compute the density of xi� .

f ðxi�Þ ¼
n

rps=
ffiffiffi

2
p f

xi�

rps=
ffiffiffi

2
p

 !

1�F
xi�

rps=
ffiffiffi

2
p

 !" #n�1

: (47)

Equation (46) can now be integrated over all xi�. After changing variables t¼ xi�=ðrps=
ffiffiffi

2
p

Þ, we
obtain

P Ds j sm;wm; sf ;wf

� �

¼

¼
Z

¥

�¥
nfðtÞ 1�FðtÞ½ �n�1

1�F
zK � smþsf

2
� wmþwf

2
� trps=

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2=2� r2ps=2
q

0

B

@

1

C

A

2
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7

5
dt

¼
Z

¥

�¥
nfðtÞ 1�FðtÞ½ �n�1

1�F
zK � gmþgf

2
� trps=

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2=2� r2ps=2
q

0
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2

6

4

3

7

5
dt:

(48)

Note that the final result depends only on gm and gf. Thus, Equation (48) can be integrated over

gm and gf (according to their posterior distribution given the family disease history; see Section 6.6)

to provide the disease risk probability.

6.4 Excluding high-risk embryos

Here, the density of the score of the selected embryo is given by Equation (28), which continues to

hold, with c ¼ ðsm þ sf Þ=2.

f ðxsÞ ¼

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

1�F
zqrps�c

rps=
ffiffi

2
p

� � 1�F
zqrps�c

rps=
ffiffi

2
p

� �h in

for xs>zqrps � c

1

rps=
ffiffi

2
p f xs

rps=
ffiffi

2
p

� �

F
zqrps�c

rps=
ffiffi

2
p

� � 1� 1�F
zqrps�c

rps=
ffiffi

2
p

� �h inn o

for xs<zqrps � c
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>

>

>

:

(49)

Integrating over all xs, following similar steps as in Section 4, we obtain, denoting by Ds the event

that the selected embryo is affected,

P Ds j sm;wm; sf ;wf

� �

¼
Z

¥

�¥
hðt;gÞ�ðtÞdt; (50)

where we defined

�ðtÞ ¼fðtÞ 1�F
zK�trps=

ffiffi

2
p

�smþsf

2
�wmþwf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�h2=2�r2ps=2
p

� �� �

¼fðtÞ 1�F
zK�trps=

ffiffi

2
p

�gmþgf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�h2=2�r2ps=2
p

� �� �

;

hðt;gÞ ¼
1� 1�F gð Þ½ �n

F gð Þ for t<g;

1�F gð Þ½ �n�1
for t>g

(

; and

g ¼
ffiffiffi

2
p

zq� c

rps=
ffiffi

2
p :

(51)
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Here, Equation (50) depends on c;gm;gf , and they must be integrated over to obtain the final

disease probability.

6.5 The baseline risk

To compute the relative risk reduction, we need the baseline risk, that is, the risk when selecting a

embryo at random given the parental genetic components. We have

P Ds j sm;wm; sf ;wf

� �

¼ Pðyi>zKÞ

¼ P
smþ sf

2
þ xiþ

wmþwf

2
þ viþ �i>zK

� �

¼ P xi þ vi þ �i>zK � gmþ gf

2

� �

¼ 1�F
zK � gmþgf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2=2
p

 !

:

(52)

The last line holds because Var xiþ viþ �ið Þ ¼ r2ps=2þðh2 � r2psÞ=2þð1� h2Þ ¼ 1� h2=2.

6.6 The disease risk conditional on the parental disease status

In subsections 6.3, 6.4, and 6.5, we computed the disease probability under the various strategies

given the parental genetic components. For the baseline risk and for the lowest-risk prioritization

strategy, the risk depended only on gm and gf. For the high-risk exclusion strategy, the risk also

depended on c. In this section, we compute the posterior probability of these genetic components

conditional on the disease status of the parents.

Denote by Dm the indicator variable that the mother is affected (i.e. Dm ¼ 1 if the mother is

affected and Dm ¼ 0 otherwise), and define Df similarly. The risk of the selected embryo conditional

on the parental disease status can be written as

P Ds jDm;Df

� �

¼
Z Z Z

dgmdgf dcP Ds jgm;gf ;c;Dm;Df

� �

f ðgm;gf ;c jDm;Df Þ

¼
Z Z Z

dgmdgf dcP Ds jgm;gf ;c
� �

f ðc jgm;gf Þf ðgm;gf jDm;Df Þ:
(53)

The second line of Equation (53) consists of three terms. The first is P Ds jgm;gf ;c
� �

, which was

computed in the previous subsections for the various selection strategies. Note that we assumed

P Ds jgm;gf ;c;Dm;Df

� �

¼ P Ds jgm;gf ;c
� �

. This holds because given the genetic components of the

parents, their disease status does not provide additional information on the disease status of the

children, at least under a model where the environment is not shared (see Section 10). The second

term is the density of c, which can be similarly written as f ðc jgm;gf ;Dm;Df Þ ¼ f ðc jgm;gf Þ. The third

term is the posterior distribution of gm and gf given the parental disease status, f ðgm;gf jDm;Df Þ. In
the following, we derive the third term and then the second term.

Note that if P Ds j gm; gf ; c
� �

¼ P Ds j gm; gf
� �

, as in the case of the baseline risk (Equation (52)) and

the lowest-risk prioritization (Equation (48)), the risk of the selected embryo can be simplified by

integrating over c,

P Ds jDm;Df

� �

¼
Z Z

dgmdgfP Ds jgm;gf
� �

f ðgm;gf jDm;Df Þ: (54)

6.7 The distribution of the parental genetic components given the parental
disease status

First, we assume (given that we did not model assortative mating) that given one parent’s disease

status, his/her genetic component is independent of the spouse’s disease status or genetic factors.

Thus, the posterior distribution can be factored into
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f ðgm;gf jDm;Df Þ ¼ f ðgm jDmÞf ðgf jDf Þ: (55)

Next, without loss of generality, we focus on just the mother. To derive the posterior distribution

f ðgm jDmÞ, we first need the prior, gm ~Nð0;h2Þ.

fprðgmÞ ¼
1

h
f

gm

h

� �

: (56)

Next, the likelihood that the mother is affected is

PðDm ¼ 1 jgmÞ ¼ Pðy>zKÞ ¼ Pðgmþ �>zKÞ ¼ Pð�>zK � gmÞ ¼ 1�F
zK � gm
ffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p
� �

: (57)

Similarly,

PðDm ¼ 0 jgmÞ ¼F
zK � gm
ffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p
� �

: (58)

Using Bayes’ theorem,

f ðgm jDm ¼ 1Þ ¼ PðDm ¼ 1 jgmÞfprðgmÞ
PðDm ¼ 1Þ ¼

1�F zK�gm
ffiffiffiffiffiffiffiffi

1�h2
p
� �h i

1

h
f gm

h

� �

K
: (59)

Similarly,

f ðgm jDm ¼ 0Þ ¼ PðDm ¼ 0 jgmÞfprðgmÞ
PðDm ¼ 0Þ ¼

F zK�gm
ffiffiffiffiffiffiffiffi

1�h2
p
� �

1

h
f gm

h

� �

1�K
: (60)

The same results hold for f ðgf jDf ¼ 1Þ and f ðgf jDf ¼ 1Þ. We have thus specified the posterior dis-

tribution f ðgm;gf jDm;Df Þ.

6.8 The distribution of the parental mean score given the parental genetic
components

The final missing term is f ðc j gm; gf Þ. To compute this distribution, we note that c, gm, and gf have a

multivariate normal distribution,

ðc;gm;gf Þ~MVN

0

0

0

0

B

@

1

C

A
;

r2ps
2

r2ps
2

r2ps
2

r2ps
2

h2 0

r2ps
2

0 h2

0

B

B

B

@

1

C

C

C

A

0

B

B

B

@

1

C

C

C

A

: (61)

To explain the above equation, recall that Var cð Þ ¼ r2ps=2 and Var gmð Þ ¼ Var gf
� �

¼ h2. Then,

Cov c;gmð Þ ¼Cov
smþ sf

2
;gm

� �

¼ 1

2
Cov sm;gmð Þ ¼ 1

2
Cov sm; smþwmð Þ ¼ 1

2
Var smð Þ ¼

r2ps

2
: (62)

A similar result holds for the paternal genetic component. To compute the density of c given gm

and gf, we use standard theory for multivariate normal variables (as in Section 2.1). We have

c jgm;gf ~Nð�;s2Þ; (63)

with

�¼
r2ps

h2
gmþ gf

2

� �

;s2 ¼
r2ps

2h2
ðh2 � r2psÞ: (64)

We have thus specified f ðc jgm;gf Þ.
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6.9 Summary of the computation

In summary, for the high-risk exclusion strategy, the probability of disease of the selected embyro

given the parental disease status is given by Equation (53), with P Ds j gm; gf ; c
� �

given in Equa-

tion (50) and f ðc j gm; gf Þ in Equation (63). The conditional probability of disease for the lowest-risk

prioritization strategy and for random selection (the baseline risk) is given by Equation (54), with

P Ds j gm; gf
� �

given in Equations (48) and Equation (52), respectively. For all selection strategies,

f ðgm; gf jDm;Df Þ is given by Equations (55), (59), and (60), depending on the particular family

history.

Numerically, computing the baseline disease risk requires two integrals (over gm and gf). Comput-

ing the risk for the lowest-risk prioritization strategy requires three integrals (over gm, gf, and t).

Computing the risk for the high-risk exclusion strategy requires four integrals (over gm, gf, c, and t).

7 Two diseases
Prioritizing embryos based on low risk for a target disease may increase risk for a second disease, if

that disease is genetically anti-correlated with the target disease. In this section, we develop a model

for the PRSs of two diseases in order to investigate this risk.

We denote the variance explained by the scores of the two diseases as r2
1
and r2

2
, where disease 1

is the target disease (i.e. embryos are prioritized based on their risk for that disease), and disease 2

is the correlated disease. Denote the genetic correlation between the diseases as � (where �<0 is

the case raising the concern about increasing the risk of the correlated disease), the scores of a child

as sð1Þ and sð2Þ, the scores of the mother as sð1Þm and sð2Þm , and the scores of the father as s
ð1Þ
f and s

ð2Þ
f .

The vector ðsð1Þ; sð2Þ; sð1Þm ; sð2Þm ; s
ð1Þ
f ; s

ð2Þ
f Þ has a multivariate normal distribution, with zero means, and with

the following covariance matrix (extending Equation (9)).

S¼ sð1Þ sð2Þ sð1Þm sð2Þm s
ð1Þ
f s

ð2Þ
f

sð1Þ

sð2Þ

sð1Þm

sð2Þm

s
ð1Þ
f

s
ð2Þ
f

r2
1

�r1r2
r2
1

2

�r1r2
2

r2
1

2

�r1r2
2

�r1r2 r2
2

�r1r2
2

r2
2

2

�r1r2
2

r2
2

2

r2
1

2

�r1r2
2

r2
1

�r1r2 0 0

�r1r2
2

r2
2

2
�r1r2 r2

2
0 0

r2
1

2

�r1r2
2

0 0 r2
1

�r1r2

�r1r2
2

r2
2

2
0 0 �r1r2 r2

2

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(65)

In the above covariance matrix, we assumed that the correlation between the scores of the two

diseases is also r. The covariance between parent-child scores for different diseases is half the

covariance of the scores within an individual (e.g. see Karavani et al., 2019).

Next, we need the density of sð1Þ; sð2Þ
� �

, conditional on sð1Þm ; sð2Þm ; s
ð1Þ
f ; s

ð2Þ
f

� �

. We follow a similar pro-

cedure as in Section 2.1, and obtain the conditional density of sð1Þ; sð2Þ
� �

as MVNð�c;ScÞ with

�c ¼
s
ð1Þ
m þs

ð1Þ
f

2

s
ð2Þ
m þs

ð2Þ
f

2

0

B

@

1

C

A
;Sc ¼

r2
1

2

�r1r2
2

�r1r2
2

r2
2

2

0

@

1

A: (66)

We would like to compute the expected increase in risk to become affected by the second dis-

ease, given any selection strategy of embryos based on a PRS for the first disease. Solving this prob-

lem analytically is beyond the scope of this work. However, the above results imply a method we

could use for simulations.

Let us first consider how to draw the average parental scores, which we denote cð1Þ ¼

sð1Þm þ s
ð1Þ
f

� �

=2 and cð2Þ ¼ sð2Þm þ s
ð2Þ
f

� �

=2. The vector cð1Þ; cð2Þ
� �

has a multivariate normal distribution

with zero means (as each parental score has zero mean in the population), and the following covari-

ance matrix. The variances are Var cð1Þ
� �

¼ r2
1
=2 and Var cð2Þ

� �

¼ r2
2
=2. The covariance is
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Cov cð1Þ;cð2Þ
� �

¼Cov
sð1Þm þ s

ð1Þ
f

2
;
sð2Þm þ s

ð2Þ
f

2

 !

¼ 1

2
Cov sð1Þm ; sð2Þm

� �

¼ �r1r2
2

: (67)

Thus, the covariance matrix is equal to Sc from Equation (66) above. This suggests the following

simple algorithm for generating the risk scores of the embryos.

cð1Þ

cð2Þ

 !

~MVN
0

0

� �

;

r2
1

2

�r1r2
2

�r1r2
2

r2
2

2

0

@

1

A

0

@

1

A;
s
ð1Þ
i

s
ð2Þ
i

 !

~MVN
cð1Þ

cð2Þ

 !

;

r2
1

2

�r1r2
2

�r1r2
2

r2
2

2

0

@

1

A

0

@

1

A; i¼ 1; . . . ;n: (68)

In our simulations, we select an embryo based on its score for disease 1, according to a selection

strategy. We draw the non-score component for disease 1 of the selected embryo as

eð1Þ ~Nð0;1� r2
1
Þ, and the liability of the embryo for that disease is then yð1Þ ¼ sð1Þþ eð1Þ. We draw the

liability for disease 2 of the selected embryo similarly. In our simulations, we draw eð1Þ and eð2Þ inde-

pendently, even though they are correlated. [Any genetic component not included in the score

should be correlated between the diseases, and the environments affecting the two diseases may be

correlated as well.] We do this because we are only interested in the marginal outcome for each dis-

ease separately (i.e. not in the joint outcome of the two diseases). The selected embryo is desig-

nated as affected by each disease if the liability of that disease exceeds its respective threshold.

We note that the above model represents the following approximation. As the scores are (noisily)

estimating the total genetic effects, the score of one disease is correlated with the non-score genetic

component of the other disease. Thus, a more accurate expression for the liability to disease 2

would take into account not only s
ð2Þ
i but also s

ð1Þ
i . However, the dependence is expected to be

weak.

8 Comparison to previous work
In the ‘gwern’ blog (Gwern, 2018), the utility of embryo selection for traits and/or diseases was

investigated. For disease risk, a model similar to ours was studied, based on the liability threshold

model. However, the model assumed that given the polygenic score, the distribution of the remain-

ing contribution to the liability has unit variance, instead of 1� r2ps (the function liabilityThreshold-

Value therein). Further, the blog provided only numerical results, and it did not consider the

variability in the gain, the high-risk exclusion strategy, the risk reduction conditional on the parental

scores or disease status, and the per-couple relative risk reduction. Treff et al. (Treff et al., 2019a)

also employed the liability threshold model to evaluate embryo selection for disease risk. However,

they did not consider the high-risk exclusion strategy, and did not compute analytically the risk

reduction. They only provided simulation results for the case when a parent is affected based on an

approximate model.

9 Simulations
Our analytical results in the above sections provide exact expressions for the relative risk reduction

under various settings in the form of integrals, which we then solve numerically. To validate our ana-

lytical derivations and the numerical solutions, we also simulated the scores of embryos under each

setting, and verified that the empirical risk reductions agree with the analytical predictions.

To simulate the scores of embryos, we used the representation si ¼ xi þ c, where ðx1; . . . ; xnÞ are

independent normals with zero means and variance r2ps=2, and c ~Nð0; r2ps=2Þ is shared across all

embryos. Thus, for each ‘couple’, we first draw c, then draw n independent normals ðx1; . . . ; xnÞ, and
then compute the score of embryo i as si ¼ xi þ c, for i ¼ 1; . . . ; n. The score of the selected embryo

was the lowest among the n embryos in the lowest-risk prioritization strategy. For the high-risk exclu-

sion strategy, we selected the first embryo with score s<zqrps. If no such embryo existed, we selected

the first embryo (except for one analysis, in which, if all embryos were high-risk, we selected the

embryo with the lowest score). We then drew the residual of the liability as e ~Nð0; 1� r2psÞ, and com-

puted the liability as s� þ e, where s� is the score of the selected embryo. If the liability exceeded the

threshold zK , we designated the embryo as affected. We repeated over 106 couples, and computed
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the probability of disease as the fraction of couples in which the selected embryo was affected. We

computed the relative risk reduction using Equation (33).

For the setting when the parental risk scores are given, we computed c as c ¼ ðsm þ sf Þ=2. We

specified the maternal score as a percentile pm, such that the score itself was sm ¼ zpmrps, where zpm is

the pm percentile of the standard normal distribution. We similarly specified the paternal score. The

remaining calculations were as above. For the baseline risk, we used the same data, assuming that

the first embryo in each family was selected.

When conditioning on the parental disease status, we first drew the three independent parental

components, all as normal variables with zero mean. We drew sm and sf with variance r2ps; wm and wf

with variance h2 � r2ps; and �m and �f with variance 1� h2. We computed the maternal liability as

ym ¼ sm þ wm þ �m, and designated the mother as affected if ym>zK . We similarly assigned the pater-

nal disease status. We then drew the score of each embyro as si ¼ cþ xi, where c ¼ ðsm þ sf Þ=2 (using

the already drawn parental scores) and xi ~Nð0; r2ps=2Þ, for i ¼ 1; . . . ; n, are independent across

embryos. We selected one embryo based on the selection strategy, as described above. If s� is the

score of the selected embryo, we computed the liability of the selected embyro as

s� þ ðwm þ wf Þ=2þ vþ �, where v ~Nð0; ðh2 � r2psÞ=2Þ and � ~Nð1� h2Þ. We designated the embryo as

affected if its liability exceeded zK . We tallied the proportion of affected embryos separately for

each number of affected parents (0,1, or 2). To compute the baseline risk, we again used the first

embryo in each family.

For two diseases, we do not have an analytical solution for the change in risk of the second dis-

ease. We thus evaluated the risk using simulations only. We considered the lowest-risk prioritization

strategy and the case of random parents. For each couple and for each embryo, we generated poly-

genic scores for the two diseases as outlined in Section 7. We selected the embryo with the lowest

score for the target disease, but then considered the score of that embryo for the second, correlated

disease. Denote by s�ð2Þ the score of the selected embryo for the second disease. We drew the resid-

ual of the liability for the second disease as eð2Þ ~Nð0; 1� r2
2
Þ, and the liability of the embryo for that

disease was then s�ð2Þ þ eð2Þ. If the liability exceeded the threshold of that disease, we designated

the embryo as affected. We also repeated for a random selection of an embryo for each couple. We

computed the relative risk increase based on the ratio between the risks with or without PRS-based

selection.

10 Limitations of the model
Our model has a number of limitations. First, our results rely on several modeling assumptions. (1)

We assumed an infinitesimal genetic architecture for the disease, which will not be appropriate for

oligogenic diseases or when screening the embryos for variants of very large effect. We did not

assess the robustness of our theoretical results to deviations from normality in the tails of the distri-

butions of the genetic and non-genetic components (although the good agreement with the simula-

tions based on the real genomic data provide some support that the model is reasonable). (2)

Assumption (1) implies that the variance of the scores of children is always half the population vari-

ance, regardless of the value of the parental PRSs or the disease considered (Equation 13). How-

ever, as shown in Chen et al., 2020, the variance of the scores in children can vary across families.

On the other hand, Chen et al. also showed (Figure 3C therein) that between-family differences

decrease when increasing the number of variants included in the PRS; and, as we showed here, the

differences seem to be explained mostly by sampling variance. (3) Our model also assumes no assor-

tative mating, which seems reasonable given that for genetic disease risk, correlation between

parents is weak (Rawlik et al., 2019), and given that our previous study of traits showed no differ-

ence in the results between real and random couples (Karavani et al., 2019). (4) When conditioning

on the parental disease status, we assumed independence between the environmental component

of the child and either genetic or environmental factors influencing the disease status of the parents.

Family-specific environmental factors were shown to be small for complex diseases (Wang et al.,

2017). The influence of parental genetic factors on the child’s environment is discussed in the next

paragraph. Both of these influences, to the extent that they are significant, are expected to reduce

the degree of risk reduction.
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Second, we assumed that the proportion of variance (on the liability scale) explained by the score

is r2ps, but we did not specify how to estimate it. Typically, r2ps is computed and reported by large

GWASs based on an evaluation of the score in a test set. However, the variance that will be

explained by the score in other cohorts, using other chips, and particularly, in other populations, can

be substantially lower (Martin et al., 2019). Relatedly, the variance explained by the score, as esti-

mated in samples of unrelated individuals, is inflated due to population stratification, assortative

mating, and indirect parental effects (‘genetic nurture’) (Kong et al., 2018; Young et al., 2019;

Morris et al., 2020; Mostafavi et al., 2020), where the latter refers to trait-modifying environmental

effects induced by the parents based on their genotypes. These effects do not contribute to predic-

tion accuracy when comparing polygenic scores between siblings (as when screening IVF embryos),

and thus, the variance explained by polygenic scores in this setting can be substantially reduced, in

particular for cognitive traits. However, recent empirical work on within-family disease risk prediction

showed that the reduction in accuracy is at most modest (Lello et al., 2020), and within-siblings-

GWAS yielded similar results to unrelated-GWAS for most physiological traits (Howe et al., 2021).

Third, we implicitly assumed that polygenic scores could be computed with perfect accuracy

based on the genotypes of IVF embryos. However, embryos are genotyped based on DNA from a

single or very few cells, and whole-genome amplification results in high rates of allele dropout. Fur-

ther, embryos are often sequenced to low depth. However, we and others have shown that very

accurate genotyping of IVF embryos is feasible (Backenroth et al., 2019; Kumar et al., 2015;

Natesan et al., 2014; Treff et al., 2019b; Xiong et al., 2019; Yan et al., 2015; Zamani Esteki

et al., 2015). Either way, even if sequencing errors do occur, their effect can be readily taken into

account. Suppose that r2
0
is the proportion of variance in liability explained by a perfectly genotyped

PRS, and that r2impute is the squared correlation between the true score and the imputed score of an

embryo (which can be estimated experimentally). Then r2ps ¼ r2
0
� r2impute, where r2ps is the variance

explained by the observed score, that is, the index used in our models.

Fourth, we did not model the process of IVF and the possible reasons for loss of embryos. Rather,

we assumed that n viable embryos are available that would have led to live birth if implanted. The

original number of fertilized oocytes would typically be greater than n (see, e.g. the ‘gwern’ blog for

more detailed modeling). Similarly, we did not model the age-dependence of the number of

embryos; again, we rather assume n viable embryos are available. Finally, we assumed a single

embryo transfer. In principle, transfer of, for example, two embryos is straightforward to simulate:

we can select two embryos based on the selection strategy (e.g., under lowest-risk prioritization,

select the two embryos with the lowest PRSs). Then, if only one of them is born, we can assume that

the child is each of the embryos with probability 0.5. We expect the RRR to somewhat decrease

under multiple embryo transfer, for both the lowest-risk prioritization and high-risk exclusion selec-

tion strategies. However, an analytical derivation seems difficult.

Fifth, the residual e in Equation (2) (y ¼ sþ e) has a complex pattern of correlation between sib-

lings. As noted in Section 1, e has contributions from both genetic and environmental factors. The

genetic covariance between siblings is straightforward to model (as in Section 2). However, the pro-

portion of variance in liability explained by shared environment needs to be estimated and can be

large (Lakhani et al., 2019). Further, embryos from the same IVF cycle (when only one is actually

implanted) would have experienced the same early developmental environment and are thus

expected to share even more environmental factors, similarly to twins. In the current work, the corre-

lation between non-genetic factors across embryos does not enter our derivations. However, care

must be taken in any attempt to model the joint phenotypic outcomes of multiple embryos.

Finally, in this work, we modeled various scenarios for the ascertainment of the parents: either

randomly, or based on their scores, or based on their disease status. In future work, it will be inter-

esting to model other settings of family history, such as the presence of an affected child. Further, it

is likely that parents will attempt to screen the embryos for more than one disease (Treff et al.,

2020). In future work, it will be important to model screening for multiple diseases and compute the

expected outcomes.
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11 Code availability
The R code we used to implement all modeling in this paper and generate the

corresponding figures can be found at https://github.com/scarmi/embryo_selection.

To give two examples, below is an R function that computes the relative risk reduction under the

lowest-risk prioritization strategy for randomly ascertained parents.

library(MASS)

risk_reduction_lowest = function(r,K,n)

{

zk = qnorm(K, lower.tail=F)

integrand_lowest = function(t)

return(dnorm(t)*pnorm((zk-t*sqrt(1-r^2/2)) / (r/sqrt(2)), lower.tail=F)^n)
risk = integrate(integrand_lowest,-Inf,Inf)$value

return((K-risk)/K)

}

The R function below computes the relative risk reduction under the high-risk exclusion strategy

(for randomly ascertained parents).

risk_reduction_exclude = function(r,K,q,n)

{

zk = qnorm(K, lower.tail=F)

zq = qnorm(q, lower.tail=F)

integrand_t = function(t,u)

return(dnorm(t)*pnorm((zk-r/sqrt(2)*(u+t))/sqrt(1-r^2),lower.tail=F))
integrand_u = function(us)

{

y = numeric(length(us))

for (i in seq_along(us))

{

u = us[i]

beta = zq*sqrt(2)-u

internal_int1 = integrate(integrand_t,-Inf,beta,u)$value

denom1 = pnorm(beta)

if (denom1==0) {denom1=1e-300} # Avoid dividing by zero

numer1 = 1-pnorm(beta,lower.tail=F)^n
internal_int2 = integrate(integrand_t,beta,Inf,u)$value

prefactor2 = pnorm(beta,lower.tail=F)^(n-1)
y[i] = dnorm(u) * (numer1/denom1*internal_int1 + prefactor2*internal_int2)

}

return(y)

}

risk = integrate(integrand_u,-Inf,Inf)$value

return((K-risk)/K)

}
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