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Stress response in cells is understood as an organized response that allows cells to adapt to 6 

changes in external conditions by activating specific pathways. Here we investigate the 7 

dynamics of single cells when perturbed by an acute stress that is too strong for a regulated 8 

response but not lethal. We show that when the growth of bacteria is arrested by transient 9 

exposure to strong inhibitors, the statistics of their regrowth dynamics can be predicted by a 10 

model for the cellular network that ignores most of the details of the underlying molecular 11 

interactions. By measuring the regrowth dynamics after stress exposure on thousands of cells, 12 

we show that the model can predict the outcome of antibiotic persistence 13 

measurements.  Further experiments under different stress conditions support the predictions 14 

of the model. Our results may account for the ubiquitous antibiotic persistence phenotype, as 15 

well as for the difficulty in attempts to link it to specific genes. More generally, our approach 16 

suggests that two different cellular states can be observed under stress: a regulated state, which 17 

prepares cells for fast recovery, and a disrupted cellular state due to acute stress with slow and 18 

heterogeneous recovery dynamics. The latter may be described by general properties of large 19 

random networks rather than by specific pathway activation. Better understanding of the 20 

disrupted state could shed new light on the survival and evolution of cells under stress. 21 

Stress responses at the level of a single cell have been studied in many biological systems1,2. 22 

For example, when nutrients become scarce, cells can adapt by upregulating intracellular 23 

production, increasing import or switching to a different metabolism that prepares cells for 24 

survival, and regrowth when nutrients become available3. Many stress response pathways 25 

have been mapped, leading to the understanding of the mechanisms used by cells to cope 26 

with changing conditions4. However, when subjected to acute stress, which is too strong 27 

for the stress response to kick in, the behavior of cells is much less understood. In 28 

particular, even under mild stress, some sub-populations of cells may be in a disrupted state 29 

that prevents them from upregulating a stress response. Evidence for such single cell 30 

heterogeneity under stress is found in many different organisms. An example of such 31 
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heterogeneity is observed in triggered antibiotic persistence5-7. When microorganisms are 32 

exposed to starvation, or other stresses, resulting in growth arrest, a small sub-population 33 

is frozen in a dormant state which is maintained for a long time even when the cells are 34 

transferred back to growth conditions. An example of this extended lag time is shown in 35 

Fig. 1. After a period of growth, E.coli bacteria reached starvation, arresting their growth.  36 

When starvation conditions were replaced with fresh medium (Fig. 1A), bacteria resumed 37 

growth stochastically and the lag time for each bacterium was determined using an 38 

automated system (ScanLag setup8). A typical lag time distribution is shown in Fig. 1B. In 39 

contrast to the majority population that was able to resume growth shortly after being 40 

switched to fresh nutrients, a tail of long lag bacteria is observed. While this transient 41 

dormant state typically bears a fitness cost, it becomes protective if the dormant cells are 42 

then exposed to lethal antibiotics which require active growth to kill the bacteria6,9-11 (Fig. 43 

1A).  This better ability of dormant cells to survive is distinct from resistance, which allows 44 

bacteria to grow in the presence of antibiotics7. In Fig. 1C we show that the antibiotic 45 

persistence level, i.e. the fraction of surviving bacteria after an antibiotic treatment, 46 

correlates with the tail of the lag time distribution. Because the antibiotic is not effective 47 

for killing the non-growing bacteria (still in the lag phase), the bacteria that have a lag time 48 

longer than the antibiotic treatment are protected, also termed “persistence-by-lag”12,13.  49 

This result is in agreement with previous findings8,14-16 and was reproduced using strains 50 

and conditions that span different triggered persistence levels (Fig. 1C).  We conclude that 51 

understanding what shapes the stochastic exit from dormancy, i.e. the lag time distribution, 52 

enables predicting the triggered persistence level, as studied below.  53 

Despite 20 years of research into the pathways regulating antibiotic persistence17 and 54 

leading to the long lag bacteria, no clear unified molecular understanding of this clinically 55 

relevant phenotype18 has emerged. In this work, we show that the extended lag is the result 56 

of bacteria unable to overcome the stressful conditions imposed by starvation and entering 57 

a disrupted state. More generally, we propose a theoretical and experimental framework 58 

for the analysis of dynamics of cells exposed to acute stress which is beyond their adaptive 59 

potential, but not lethal, leading to a disrupted state. We focus on the quantitative 60 

measurements of the recovery of single cells from the disrupted state and show that they 61 

can be described by the general features of a model that ignores most of the details of 62 
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specific cellular pathways.  The universal behavior predicted by the model was able to 63 

predict the antibiotic persistence level as well as the quantitative dynamics of recovery 64 

from different stresses.  65 

 66 

Memory effect following acute stress  67 

To determine quantitatively how the lag time distribution depends on starvation duration 68 

under acute stress conditions, we added serine hydroxamate (SHX) to exponentially 69 

growing cultures of E.coli. SHX induces the starvation for the amino acid serine which 70 

triggers the stringent response and results in a growth arrest19 (Fig. 2A). In order to impose 71 

an acute stress that the bacteria cannot overcome and be further away from a regulated 72 

stress response, we used a relaxed mutant of the stringent response. Observations at the 73 

single cell level in microfluidic devices show that exposure to SHX results in the growth 74 

arrest of the bacteria and rule out that the growth arrest observed at the level of the 75 

population is a balance of death and growth (Fig. 2D,E).   76 

We monitored the dynamics of the recovery after the growth arrest imposed by SHX for a 77 

duration Tw, by measuring the distribution of lag times once the SHX is removed. In 78 

agreement with previous results under other stress conditions8,14,15, we found that the longer 79 

the duration of SHX exposure, the longer the tail of the distribution that dominates the 80 

antibiotic persistence level (Fig. 2B,C), with bacteria lagging for more than day . This 81 

suggested that the bacteria keep a memory of the total duration of SHX exposure. This 82 

memory is not due to stable genetic changes because repeating the same experiment for a 83 

culture started from a late appearing colony again depended on the starvation time8 (Fig. 84 

S1C,D). In agreement with recent results, we observed that the distributions display a long 85 

tail,  which is also reflected in the tail of the killing curve under antibiotic treatments20. 86 

Whereas an exponential decay is the expected behavior of a stochastic process with one 87 

characteristic time and is often observed in the initial killing of microorganisms by 88 

antibiotics, the tail of persisters in wild-type E.coli cannot be fitted with a single 89 

exponential decay6,20. One explanation for the appearance of a long tail after SHX exposure 90 

may be because the short lag bacteria are killed by the SHX itself, which would enrich for 91 

the long lag bacteria. We ruled this factor out by showing that the viability under SHX 92 
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stayed nearly constant (Fig. S1A) and by direct observation of E.coli bacteria before, 93 

during and after exposure to SHX in a microfluidic device21 (Fig. 2D,E). Delays due to the 94 

SHX diffusion were ruled out (Supplementary information). We conclude that the lag time 95 

distribution following exposure to SHX reflects the changes that occurred in each single 96 

cell, increasing the probability for extremely long recovery times that keep a memory of 97 

the starvation duration. In order to further understand this phenomenon, we first search for 98 

a theoretical model with similar features. 99 

 100 

 “Ageing” as a universal property of random highly connected networks 101 

The memory of the duration of a perturbation observed above (here SHX exposure for 102 

duration Tw), as well as the non-exponential relaxation, has an equivalent in many physical 103 

systems that display “ageing”22, ranging from amorphous polymers23, stretched DNA24, 104 

crumpling25,26, colloidal solutions, spin and coulomb glasses27.  A physical system exhibits 105 

“ageing” if its relaxation after a transient external perturbation of duration Tw depends not 106 

only on its macroscopic state at the end of the perturbation but also on the conditions that 107 

led to this state28-30. For example, Struik23 showed that the relaxation of amorphous 108 

polymers after a deformation depends on how the deformation was done and on its 109 

duration. He showed that the behavior was universal i.e. independent of the details of the 110 

material, and termed this phenomenon “physical ageing” (thereafter termed ageing), which 111 

is distinct from “biological ageing” 31. Inspired by models for ageing in glassy systems that 112 

rely on large random networks32, we developed a model for the network of intracellular 113 

molecular interactions which govern the behavior of each single E.coli cell during and after 114 

exposure to acute stress.  Our goal was to study a generic model, with the minimal 115 

assumptions necessary to display the observed ageing dynamics induced by the stress, and 116 

without going into the details of the molecular interactions.  Similarly to neural networks 117 

modelling33, we considered a network of interacting nodes, while having feedback cycles 118 

typical of the genetic and metabolic networks of a cell. The network is built of cycles of 119 

various sizes, i.e. the numbers of nodes they contain. Each node represents a compound in 120 

the cell’s network (proteins, metabolites, etc.) that can be in one of two states representing 121 

its current activity34. The cycles represent crudely the genetic/metabolic pathways required 122 



5 
 

for growth, and the distribution of their size was assumed to follow a power law, similarly 123 

to the scale-free structure measured on the E.coli network35,36 and protein life-time37 (see 124 

Supplementary Information – Theory).  The model, termed the “Randomly Connected 125 

Cycles Network” (RCCN), is schematically drawn in Fig. 3A and Box1. Here the up/down 126 

green arrows represent nodes in either the ON or OFF state. Exposure to SHX translates in 127 

the model as a force applied for duration Tw , tending to turn the nodes OFF, and resulting 128 

in a macroscopic state of growth arrest. Washing of SHX ends the stress and the fraction 129 

of OFF nodes relaxes back (Fig. S2A).  Using the RCCN model simulations, we could 130 

observe the ageing dynamics of the relaxation (Fig. S2B). The model can be effectively 131 

described by an analytical mean field approximation that reproduces the ageing dynamics 132 

of the simulations (Fig. S2B- dashed lines) and provides an intuitive framework for 133 

understanding the dynamics of recovery after acute stress (see Supplementary Information-134 

Theory). Ageing in the model is due to a cascade of states that need to relax in the correct 135 

order for the whole system to go back to its state before the perturbation. This results in 136 

frustration, leading to a disrupted state with a broad distribution of time scales of meta-137 

stable states. Within our model, the lag time for recovery of each single cell is determined 138 

by the time for the fraction of OFF nodes to go back to its original value before SHX 139 

(Box1). The simulated lag time distributions, for various stress durations Tw, are plotted in 140 

Fig. 3B, together with the analytical approximation.  141 

 142 

Saturation of ageing in experimental data 143 

Both the simulations and the analytical model (Figs. 3B, S2B and Eq. S8) predict several 144 

typical features similar to those observed for physical ageing: (i) the lag time distribution 145 

depends on the stress duration; (ii) the lag time distribution contains many timescales and 146 

typically exhibits non-exponential decay; (iii) the lag time distribution should stop 147 

depending on stress duration for long enough stress, and therefore the persister bacteria 148 

fraction should not increase further at long stress exposure durations. We note that these 149 

predictions are robust to changes in the model’s parameters (Fig. S3). 150 

The first prediction is in agreement with the data of Fig. 2B showing the strong dependence 151 

of the lag time distribution on SHX exposure times. The second prediction was confirmed 152 
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by plotting the higher statistics data on a log-log scale. In agreement with previous results20, 153 

we observe that the experimental lag time distribution cannot be fitted with an exponential 154 

decay and better fitted with a power law (Fig S4A and Table S3).  In order to test the third 155 

prediction, we exposed the culture to longer durations under SHX (Fig. 3C). As predicted 156 

by the model, the effect of SHX stress on the lag time distribution of E.coli saturates around 157 

Tw>1000 minutes (Fig. 3D). This result is surprising from the biological perspective: 158 

biological ageing is typically viewed as a continuous decline in the ability of the system to 159 

recover, eventually leading to death38. Here we show that, in striking similarity with ageing 160 

in physical systems, the recovery distribution is not affected by SHX stress duration, once 161 

this duration is longer than the longest time scale of the system. The lag time distribution 162 

is similar whether the culture has been under SHX for 1300 or 2000 minutes, and without 163 

a significant decline in viability39 (Fig. S1A). Accordingly, and as predicted from the 164 

RCCN model, the triggered persister fraction resulting from the transient SHX exposure 165 

and measured directly from the survival under antibiotic treatment does not increase further 166 

after 1000 minutes of starvation (Fig.3E). 167 

In order to test whether the ageing behavior and its saturation would generalize to other 168 

modes of strong perturbation, we subjected wild-type bacteria culture to antibiotic that 169 

blocks translation (Chloramphenicol – CAM), as well as to sodium azide, which resulted 170 

in growth arrest due to ATP depletion40 and persistence (Fig. S8). These two stresses act 171 

on different pathways, also different from the ones activated by SHX41,42. In similarity to 172 

the SHX induced growth arrest, we observed ageing in the recovery dynamics from the 173 

growth arrest during CAM exposure (Fig. 4H) or sodium azide (Fig.S5).  174 

We conclude that different acute stresses can lead to ageing in the dynamics of the recovery 175 

after the stress, revealing a large cell-to-cell variability. 176 

Gradual starvation 177 

The variability and ageing in the recovery of cells from acute stresses was explained above 178 

by the dynamics of a random network recovering from a disrupted state. The model is 179 

independent of the details of the cellular interaction network.  Clearly, such a network 180 

cannot account for the regulated behavior of cells which is the result of billions of years of 181 

evolution. Therefore, we expected that when cells are exposed to similar but less acute 182 
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stress,  genetic stress response pathways should prepare cells for recovery3,4,43,44 and result 183 

in a narrow lag time distribution.  In Fig. 4, we compared cultures subjected, as above, to 184 

abrupt starvation with SHX (Fig. 4A- dotted line), to bacterial cultures reaching gradual 185 

starvation, simply by letting the culture deplete the amino-acids (Fig. 4A-solid line), 186 

reaching stationary phase. We observed that, in contrast to the ageing behavior under SHX, 187 

gradual starvation did not lead to ageing, i.e. the lag time distribution did not change with 188 

starvation duration (Fig. 4C).   We ruled out that the difference was due to the SHX itself, 189 

as its addition to the starved culture had no influence on the lag time distribution under 190 

gradual starvation (Fig. S6A). Furthermore, we also exposed exponentially growing culture 191 

to a gradual increase in SHX concentration, reaching the same optical density (OD) as 192 

abrupt SHX exposure (Fig. 4D). This gradual exposure to stress did not lead to aging (Fig. 193 

4F). As we expected, despite the similar conditions of the abruptly arrested (Fig. 4G) and 194 

gradually arrested cultures (Fig. 4F), the lag time distributions are very different. Whereas 195 

the gradual starvation leads to little cell-to-cell variability, with a lag time distribution 196 

consistent with a fast stochastic exit with a characteristic time of 50 minutes (Fig. S6B), 197 

the abrupt SHX starvation results in a broad distribution with time scales longer than a day 198 

(Fig. 3D,4G). 199 

 200 

Classifying stresses according to their recovery dynamics 201 

The understanding that strong stresses can drive the cell into a disrupted state, with long 202 

and widely distributed recovery time-scales, whereas stresses to which cells are adapted 203 

result in fast and organized recovery, allows to classify different stresses. As shown above, 204 

gradual starvation in minimal medium, as well as gradual exposure to SHX, allows the 205 

E.coli cells to adapt and reach a growth arrested state from which they emerge back in a 206 

uniform and fast time-scale (Fig. 4B,E). Similarly, starvation in saline solution does not 207 

lead to ageing (Fig. S9, S10C). However, previous observations of the lag time 208 

distributions of E.coli K-12 for different durations of starvation at the stationary phase in 209 

LB medium suggested that what may seem as a gradual starvation actually leads, in our 210 

framework, to a disrupted state and ageing. In order to understand this apparent 211 

contradiction, we repeated the starvation experiments in LB for two E.coli strains: the 212 

E.coli K-12, which has undergone many years of evolution in labs since its isolation from 213 
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the wild, and a more recent EPEC wild-type isolate. We found that starvation in LB does 214 

not lead to a disrupted state for short starvation time (typical of an overnight culture). 215 

However, starvation longer than overnight does lead to the disrupted state and ageing in 216 

the K-12 strain (Fig. S9), in agreement with our previous results8, but not for the EPEC 217 

strain (Fig. S9). In our stress classification framework, this suggests that whereas the EPEC 218 

strain of E.coli is adapted to longer starvation in rich medium, the lab K-12 strain may have 219 

lost the ability to recover fast from these conditions which it does not encounter in 220 

laboratory conditions3.  Finally, we regroup all stress conditions into one plot showing that 221 

while most conditions can be classified as leading or not to ageing (Fig. S10C), starvation 222 

of the K-12 strain in LB has an intermediate level of ageing. 223 

Discussion 224 

The analogy between the disrupted state of bacteria under prolonged stress and ageing in 225 

random dynamical systems that we present here (Box1) provides a new framework for the 226 

description of the response of cells to strong perturbations45. Clearly, random networks 227 

cannot describe regulated cellular responses that rely on specific networks. In particular, 228 

cellular networks have been recently shown to suppress frustration when compared to 229 

random networks46. However, once the system is driven away from its adaptive potential, 230 

frustration is not suppressed anymore and a disrupted state is reached whose dynamics are 231 

better described statistically by a random model that ignores the details of the underlying 232 

pathways. The recovery from acute stress that we observed is characterized by three main 233 

features: ageing dynamics, saturation of ageing and broad single-cell variability. All these 234 

are robust features predicted by the RCCN model. The biochemical intuition for the 235 

frustration that characterizes the disrupted state can be understood as the inability of the 236 

genetic network to regulate the compounds that allow the cell to deal with the stress, 237 

because other compounds are missing for their production or degradation. This frustration 238 

can then propagate in the network leading to a globally dysregulated state and large cell-239 

to-cell heterogeneity.  240 

In our experiments, the natural and gradual stresses allow the cell to reach  an attractor of 241 

the gene regulation network47 (Fig. 4J), in which bacteria are narrowly distributed around 242 

one phenotype with one characteristic lag time, as observed for the gradual starvation in 243 
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minimal medium (Fig. 4C) or gradual exposure to SHX (Fig. 4F). This growth arrested 244 

stable state has been previously shown to be different from a frozen state and to actually 245 

sustain long-term protein production at a constant rate (CASP)48. More generally, it is 246 

expected that regulated responses reach stability49 (Fig. 4I). Lag time for the exit from such 247 

a gradual starvation state was shown to be mainly due to pathways associated with 248 

growth50,51. In contrast, the strong and abrupt perturbations (SHX /sodium azide/CAM) 249 

disrupt the network in a way that drives its dynamics away from its biological adaptation 250 

potential and closer to the generic dynamics of the large random network (Fig.4J). The 251 

dynamics of recovery of individual bacteria from the disrupted state reveal the complexity 252 

of the intracellular dynamics, resulting in a very broad lag time distribution (Fig. 4G,H). 253 

The longer the starvation time, Tw, the longer the time-scales that are reflected in the single–254 

cell individuality leading to antibiotic persistence. At Tw longer than about a day, ageing 255 

saturates revealing, according to the RCCN model, the longest time-scale of the cellular 256 

dynamics which is surprisingly long for E.coli52.The ageing dynamics features may not be 257 

related to a particular genetic pathway, but rather to the global architecture of the network. 258 

Therefore, the triggered persister cells, namely the bacteria that are protected by the 259 

extended lag time acquired following a stress, may be better described by the global 260 

dynamics of a random network rather than by a regulated response. This view is inspired 261 

by the Pash hypothesis53, which suggested that antibiotic persistence is the result of random 262 

glitches and errors rather than of a specific genetic pathway54. Our results provide a new 263 

framework, with quantitative predictions, for understanding antibiotic persistence as a 264 

feature of a disrupted state, displaying the global dynamics of cellular networks far away 265 

from their comfort zone45. 266 

More generally, the work identifies a regime in which cellular networks under strong 267 

perturbations can be approximated by a large non-linear network that ignores most of the 268 

details of the underlying molecular interactions and for which measurements, such as 269 

specific gene expression, may reflect random dynamics45. Our approach suggests that 270 

similar behavior should account for different observations such as the post-antibiotic effect 271 

55, and differences in the recovery dynamics from various starvation conditions 56. Recent 272 

developments in single-bacteria RNAseq57-59 may enable to further characterize the 273 

disrupted state by identifying a global state of dysregulation.  274 
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The measurement of universal ageing dynamics in a biological system, as presented in this 275 

work, can be extended to various other cellular systems under stress, such as cells under 276 

anti-cancer drugs, and should be an important tool for predictive biology60. The approach 277 

allows distinguishing between two very different regimes of cellular behavior that require 278 

different measurements: a regulated regime, for which the molecular information such as 279 

transcriptomics or proteomics provide insightful mechanistic information, and a disrupted 280 

regime in which cells are closer to a universal behavior similar to that of high dimensional 281 

physical systems, such as ageing and phase transitions. 282 
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 419 

Fig. 1 The tail of the lag time distribution correlates with survival under antibiotic treatment. 420 

(A) Schematic time course: after a period of growth, the culture is starved for a duration Tw 421 

(waiting time)– where bacteria arrest their growth – and then re-exposed to nutrients. Single 422 

bacteria stochastically re-grow after a lag time. If the culture is exposed transiently to antibiotics, 423 

bacteria that re-grow are killed, whereas non-growing persisters survive. (B) Typical distribution 424 

of the lag time following LB starvation measured by monitoring the appearance of colonies on 425 

Petri dishes8 (here Tw=1820 minutes). A tail of colonies appearing long after plating can be seen 426 

in the red box. Inset: same data replotted as 1- CDF (Cumulative Distribution Function), which 427 

represents the fraction of bacteria still in the lag phase, and enables better visualization of the tail 428 

of the distribution. The fraction is one at the end of starvation (all bacteria are growth arrested) 429 

and decreases to zero as bacteria exit the lag (C) The tail fraction of the lag time distribution (here 430 

above 4.5 h), i.e. the bacteria with a lag time longer than 4.5 h, is predictive for the survival 431 

fraction under an antibiotic treatment of the same duration. Blue circles: KLY wt- different Tw. Red 432 

triangles: KLYtol high persistence derivative. Dashed line: linear regression; Pearson correlation: 433 

0.97, p<10-11. Spearman correlation for KLY wt and KLYtol, respectively: cor=0.87, p=0.0012 and 434 

cor=0.69, p=0.026. 435 

436 
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 437 

Fig. 2 Distribution of the lag time following starvation for various durations Tw of exposure to 438 

serine hydroxamate (SHX). (A) OD measurements of growth (dashed line) and arrest due to SHX 439 

exposure (solid line). (B) Lag time distribution for different starvation durations. Data are 440 

presented as 1-CDF (cumulative distribution function) on log scale to better visualize the tail of 441 

the distribution. (C) Total fraction of bacteria in the tail of the distribution shown in (B), with lag 442 

times above 9.5 hours, versus starvation duration. Error bars: std (n=3). (D)  Kymograph of 443 

microfluidics observations of the growth arrest of single KLYR E.coli bacteria (yellow fluorescence) 444 

subjected to SHX and their recovery. During the initial growth phase, bacteria grow and divide in 445 

the grooves and migrate upwards. After exposure to SHX, growth stops. At Tw=600 minutes, SHX 446 

was washed and bacteria resumed growth stochastically. The black dots and white lines are guides 447 

to the eye to enable tracking the same bacterium between frames. (E) Quantification of growth 448 

arrest under SHX in single cells: 97% of cells arrested their growth (1%:one division only; 2% lysis); 449 

upon SHX washing, 96% resumed growth (see Supplementary Methods). All experiments were 450 

performed in at least three repeats. Strain: KLYmotA. 451 

452 
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 453 

Fig.3 The Randomly Connected Cycles Network (RCCN) model reproduces the ageing dynamics 454 

observed in the experiment (A) Schematic representation of the random cycles network model: 455 

cycles of nodes are inter-connected with randomly chosen interaction coupling strengths Jij (grey 456 

arrows). The dynamics of the state of each node (spin) in the network is determined by summing 457 

up on interactions with the connected nodes and external field (Eq. S5). (B) Prediction from the 458 

simulation for the dependence of the distribution of lag times following starvation (here plotted 459 

as 1-CDF on log-log scale). Different colours represent different Tw durations. Simulation 460 

parameters are listed in Table S2. Dashed lines are the analytical results. (C) OD630 measurements 461 

of growth and arrest due to SHX exposure. Dashed line: no SHX. (D) Experimental results for the 462 

distribution of lag times as measured after abrupt exposure to SHX. Note that the lag time 463 

distribution becomes independent of starvation duration for long enough starvation, as predicted 464 

by the model. Different colours represent different durations of exposure to SHX and correspond 465 

to the coloured marks of sampling times in (C). (E) Measurements of the survival under 9.5 hours 466 

of ampicillin treatment during the recovery of SHX starvation versus abrupt SHX starvation 467 

duration,Tw. As predicted by the RCCN (Eq.S8) (purple dashed lines), the survival under antibiotics 468 

first increases sharply with exposure time but saturates at longer times. Different lines represent 469 

different biological replicates. Strain: KLYR.  470 

471 
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 472 

Fig.4 (A-F) No ageing under gradual starvation. (A-C) Gradual starvation by nutrient depletion. 473 

(A) OD measurements of bacterial cultures exposed to SHX during exponential growth (acute 474 

stress – dotted line), or exposed to SHX after gradual starvation by nutrient depletion to stationary 475 

phase (gradual stress – solid line). (B) Viability under gradual starvation. Significance tests over 3 476 

biological replicates. Differences in viability are non significant (NS). (C) Lag time distribution after 477 

gradual starvation by nutrients depletion. The coloured curves represent different starvation 478 

durations according to colours in (A). (D-F) Gradual starvation by adding SHX gradually in several 479 

steps. (D) During exponential growth, a culture was starved gradually by adding SHX in steps, 480 

reaching growth-arrest at a low OD (solid line). Dashed line: no SHX addition. Blue line: SHX 481 

concentration. (E) Viability under the gradual SHX starvation. Significance tests over 3 biological 482 

replicates. Differences in viability are non significant (NS). (F) Lag time distribution after adding 483 

SHX gradually in steps. Strain: KLYR. (G) Lag time distribution after abrupt SHX starvation (Fig. 3D 484 

semi-log scale for comparison). Strain: KLYR. (H) Lag time distribution after abrupt 485 
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chloramphenicol exposure. Strain: MG1655. (I-J) Schematic illustration of gradual starvation 486 

versus acute perturbation. The black line shows a schematic landscape of the cell’s possible 487 

states. (I) Gradual starvation leads single bacteria (green) to a regulated response reaching a fixed 488 

point in the cell’s network characterized by a narrow distribution of lag times and no ageing. (J) 489 

Acute stress results in a disrupted state displaying dynamics of the cell’s network similar to ageing 490 

dynamics in physical systems and broad lag time distributions that depend on starvation duration. 491 

Different colours in the lag time distributions (plotted as 1-CDF) at the bottom represent different 492 

stress exposure durations. 493 

  494 
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 508 

Box1: Analogy between physical ageing in a spin network and ageing of bacteria under 

acute stress.  


